版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省湖州市吳興區(qū)達標名校2023年下學期初三數(shù)學試題1月階段測試考試試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:閱讀時間(小時)22.533.54學生人數(shù)(名)12863則關于這20名學生閱讀小時數(shù)的說法正確的是()A.眾數(shù)是8 B.中位數(shù)是3C.平均數(shù)是3 D.方差是0.342.某校數(shù)學興趣小組在一次數(shù)學課外活動中,隨機抽查該校10名同學參加今年初中學業(yè)水平考試的體育成績,得到結果如下表所示:下列說法正確的是()A.這10名同學體育成績的中位數(shù)為38分B.這10名同學體育成績的平均數(shù)為38分C.這10名同學體育成績的眾數(shù)為39分D.這10名同學體育成績的方差為23.四根長度分別為3,4,6,x(x為正整數(shù))的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為164.如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個邊長為4m的正方形,使不規(guī)則區(qū)域落在正方形內.現(xiàn)向正方形內隨機投擲小球(假設小球落在正方形內每一點都是等可能的),經過大量重復投擲試驗,發(fā)現(xiàn)小球落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,由此可估計不規(guī)則區(qū)域的面積約為()A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m25.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.6.如圖所示的幾何體,它的左視圖是()A. B. C. D.7.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數(shù)根的情況是()A.有三個實數(shù)根 B.有兩個實數(shù)根 C.有一個實數(shù)根 D.無實數(shù)根8.如圖,點A,B在反比例函數(shù)y=1x(x>0)的圖象上,點C,D在反比例函數(shù)y=A.4 B.3 C.2 D.39.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.10.計算的結果是()A. B. C. D.111.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=30°,則∠BAD為()A.30° B.50° C.60° D.70°12.如圖所示的正方體的展開圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,是一個正方體包裝盒的表面展開圖,若在其中的三個正方形A、B、C內分別填上適當?shù)臄?shù),使得將這個表面展開圖折成正方體后,相對面上的兩個數(shù)互為相反數(shù),則填在B內的數(shù)為______.14.如圖,在矩形ABCD中,E是AD邊的中點,,垂足為點F,連接DF,分析下列四個結論:∽;;;其中正確的結論有______.15.如圖,在平面直角坐標系中,點A(0,6),點B在x軸的負半軸上,將線段AB繞點A逆時針旋轉90°至AB',點M是線段AB'的中點,若反比例函數(shù)y=(k≠0)的圖象恰好經過點B'、M,則k=_____.16.百子回歸圖是由1,2,3,…,100無重復排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史,如:中央四位“19991220”標示澳門回歸日期,最后一行中間兩位“2350”標示澳門面積,…,同時它也是十階幻方,其每行10個數(shù)之和、每列10個數(shù)之和、每條對角線10個數(shù)之和均相等,則這個和為______.百子回歸17.已知a<0,那么|﹣2a|可化簡為_____.18.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機取出一個白球的概率是23三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.該同學從5個項目中任選一個,恰好是田賽項目的概率為______;該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結果,并求恰好是一個田賽項目和一個徑賽項目的概率.20.(6分)計算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.21.(6分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關系?請證明你的結論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當BB′=6時,求PB′的長度.22.(8分)在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是_____.23.(8分)某商場經營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調查,在一段時間內,銷售單價是80元時,銷售量是200件,而銷售單價每降低1元,就可多售出20件.寫出銷售量y件與銷售單價x元之間的函數(shù)關系式;寫出銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數(shù)關系式;若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,則商場銷售該品牌童裝獲得的最大利潤是多少?24.(10分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.25.(10分)菱形的邊長為5,兩條對角線、相交于點,且,的長分別是關于的方程的兩根,求的值.26.(12分)先化簡,再求值:先化簡÷(﹣x+1),然后從﹣2<x<的范圍內選取一個合適的整數(shù)作為x的值代入求值.27.(12分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:(1)調查了________名學生;(2)補全條形統(tǒng)計圖;(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數(shù)為________;(4)學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
A、根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);B、根據(jù)中位數(shù)的定義將這組數(shù)據(jù)從小到大重新排列,求出最中間的2個數(shù)的平均數(shù),即可得出中位數(shù);C、根據(jù)加權平均數(shù)公式代入計算可得;D、根據(jù)方差公式計算即可.【詳解】解:A、由統(tǒng)計表得:眾數(shù)為3,不是8,所以此選項不正確;B、隨機調查了20名學生,所以中位數(shù)是第10個和第11個學生的閱讀小時數(shù),都是3,故中位數(shù)是3,所以此選項正確;C、平均數(shù)=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【點睛】本題考查方差;加權平均數(shù);中位數(shù);眾數(shù).2、C【解析】試題分析:10名學生的體育成績中39分出現(xiàn)的次數(shù)最多,眾數(shù)為39;第5和第6名同學的成績的平均值為中位數(shù),中位數(shù)為:=39;平均數(shù)==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴選項A,B、D錯誤;故選C.考點:方差;加權平均數(shù);中位數(shù);眾數(shù).3、D【解析】
首先寫出所有的組合情況,再進一步根據(jù)三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當三邊為3、4、1時,其周長為3+4+1=13;②當x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.【點睛】本題考查的是三角形三邊關系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關鍵.4、D【解析】
首先確定小石子落在不規(guī)則區(qū)域的概率,然后利用概率公式求得其面積即可.【詳解】∵經過大量重復投擲試驗,發(fā)現(xiàn)小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,∴小石子落在不規(guī)則區(qū)域的概率為0.65,∵正方形的邊長為4m,∴面積為16m2設不規(guī)則部分的面積為sm2則=0.65解得:s=10.4故答案為:D.【點睛】利用頻率估計概率.5、B【解析】試題分析:結合三個視圖發(fā)現(xiàn),應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.6、D【解析】分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.7、C【解析】試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點情況.因為函數(shù)與函數(shù)的圖象只有一個交點所以方程只有一個實數(shù)根故選C.考點:函數(shù)的圖象點評:函數(shù)的圖象問題是初中數(shù)學的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.8、B【解析】
首先根據(jù)A,B兩點的橫坐標,求出A,B兩點的坐標,進而根據(jù)AC//BD//y軸,及反比例函數(shù)圖像上的點的坐標特點得出C,D兩點的坐標,從而得出AC,BD的長,根據(jù)三角形的面積公式表示出S△OAC,S△ABD的面積,再根據(jù)△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.【點睛】:此題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)k的幾何意義是解本題的關鍵.9、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.10、D【解析】
根據(jù)同分母分式的加法法則計算可得結論.【詳解】===1.故選D.【點睛】本題考查了分式的加減法,解題的關鍵是掌握同分母分式的加減運算法則.11、C【解析】試題分析:連接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故選C.考點:圓周角定理12、A【解析】
有些立體圖形是由一些平面圖形圍成的,將它們的表面適當?shù)募糸_,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖.根據(jù)立體圖形表面的圖形相對位置可以判斷.【詳解】把各個展開圖折回立方體,根據(jù)三個特殊圖案的相對位置關系,可知只有選項A正確.故選A【點睛】本題考核知識點:長方體表面展開圖.解題關鍵點:把展開圖折回立方體再觀察.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】試題解析:∵正方體的展開圖中對面不存在公共部分,∴B與-1所在的面為對面.∴B內的數(shù)為1.故答案為1.14、【解析】
①證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,證明DM垂直平分CF,即可證明;④設AE=a,AB=b,則AD=2a,根據(jù)△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正確;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④錯誤;故答案為:①②③.【點睛】本題主要考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.15、12【解析】
根據(jù)題意可以求得點B'的橫坐標,然后根據(jù)反比例函數(shù)y=(k≠0)的圖象恰好經過點B'、M,從而可以求得k的值.【詳解】解:作B′C⊥y軸于點C,如圖所示,∵∠BAB′=90°,∠AOB=90°,AB=AB′,∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,∴∠ABO=∠BA′C,∴△ABO≌△BA′C,∴AO=B′C,∵點A(0,6),∴B′C=6,設點B′的坐標為(6,),∵點M是線段AB'的中點,點A(0,6),∴點M的坐標為(3,),∵反比例函數(shù)y=(k≠0)的圖象恰好經過點M,∴=,解得,k=12,故答案為:12.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征、旋轉的性質,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.16、505【解析】
根據(jù)已知得:百子回歸圖是由1,2,3…,100無重復排列而成,先計算總和;又因為一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和=總和÷10,代入求解即可.【詳解】1~100的總和為:=5050,
一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和為:n=5050÷10=505,故答案為505.【點睛】本題是數(shù)字變化類的規(guī)律題,是??碱}型;一般思路為:按所描述的規(guī)律從1開始計算,從計算的過程中慢慢發(fā)現(xiàn)規(guī)律,總結出與每一次計算都符合的規(guī)律,就是最后的答案17、﹣3a【解析】
根據(jù)二次根式的性質和絕對值的定義解答.【詳解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【點睛】本題主要考查了根據(jù)二次根式的意義化簡.二次根式規(guī)律總結:當a≥0時,=a;當a≤0時,=﹣a.解題關鍵是要判斷絕對值符號和根號下代數(shù)式的正負再去掉符號.18、1.【解析】
先根據(jù)概率公式得到2+x5+x=2【詳解】根據(jù)題意得2+x5+x解得x=4.故答案為:4.【點睛】本題考查了概率公式:隨機事件A的概率PA=事件三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】
(1)由5個項目中田賽項目有2個,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與恰好是一個田賽項目和一個徑賽項目的情況,再利用概率公式即可求得答案.【詳解】(1)∵5個項目中田賽項目有2個,∴該同學從5個項目中任選一個,恰好是田賽項目的概率為:.故答案為;(2)畫樹狀圖得:∵共有20種等可能的結果,恰好是一個田賽項目和一個徑賽項目的有12種情況,∴恰好是一個田賽項目和一個徑賽項目的概率為:.【點睛】本題考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、-1【解析】分析:根據(jù)零次冪、絕對值以及負指數(shù)次冪的計算法則求出各式的值,然后進行求和得出答案.詳解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.點睛:本題主要考查的是實數(shù)的計算法則,屬于基礎題型.理解各種計算法則是解決這個問題的關鍵.21、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解析】
(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據(jù)AE=B′E,可得∠EAB′=∠EB′A,再根據(jù)∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據(jù)B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據(jù)∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【詳解】(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【點睛】本題屬于四邊形綜合題,主要考查了折疊的性質,等邊三角形的性質,正方形的判定與性質以及勾股定理的綜合運用,解題的關鍵是設要求的線段長為x,然后根據(jù)折疊和軸對稱的性質用含x的代數(shù)式表示其他線段的長度,選擇適當?shù)闹苯侨切?,運用勾股定理列出方程求出答案.22、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】
(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關于x軸的對稱點為點M1(1,-2);②點M(1,2)關于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經過點M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【點睛】本題考查了一次函數(shù)圖象與幾何變換,一次函數(shù)圖象上點的坐標特征,一次函數(shù)的性質,解一元一次不等式組,都是基礎知識,需熟練掌握.23、(1);(2);(3)最多獲利4480元.【解析】
(1)銷售量y為200件加增加的件數(shù)(80﹣x)×20;(2)利潤w等于單件利潤×銷售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函數(shù)的性質得到w=﹣20x2+3000x﹣108000的對稱軸為x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根據(jù)二次函數(shù)的性質得到當76≤x≤78時,W隨x的增大而減小,把x=76代入計算即可得到商場銷售該品牌童裝獲得的最大利潤.【詳解】(1)根據(jù)題意得,y=200+(80﹣x)×20=﹣20x+1800,所以銷售量y件與銷售單價x元之間的函數(shù)關系式為y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數(shù)關系式為:W=﹣20x2+3000x﹣108000;(3)根據(jù)題意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,對稱軸為x=﹣=75,∵a=﹣20<0,∴拋物線開口向下,∴當76≤x≤78時,W隨x的增大而減小,∴x=76時,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商場銷售該品牌童裝獲得的最大利潤是4480元.【點睛】二次函數(shù)的應用.24、(1);(2).【解析】
(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國發(fā)動機曲軸行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國鉭電容器行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 高效會議管理培訓課件
- 消防水炮知識培訓課件
- 煤氣安全知識培訓課件
- 2024中國采礦、采石設備制造市場前景及投資研究報告
- 廣西賀州市八步區(qū)2023-2024學年九年級上學期期末化學試題
- 炭疽防控知識培訓課件下載
- 電磁學知識培訓課件
- 市引申蒙氏教學幼兒園工作參考計劃
- 建筑公司員工合規(guī)手冊
- 質量保證的基本原則與方法
- 第1講-句子結構
- 鼻腔沖洗護理技術團體標準解讀
- 《流感科普宣教》課件
- 紅領巾知識伴我成長課件
- 廚邦醬油推廣方案
- 腦血管病的三級預防
- 保險產品創(chuàng)新與市場定位培訓課件
- 2022-2023學年山東省淄博四中高二(上)期末數(shù)學試卷含答案
- 《建筑賦比興》一些筆記和摘錄(上)
評論
0/150
提交評論