英漢雙語材料力學(xué)11_第1頁
英漢雙語材料力學(xué)11_第2頁
英漢雙語材料力學(xué)11_第3頁
英漢雙語材料力學(xué)11_第4頁
英漢雙語材料力學(xué)11_第5頁
已閱讀5頁,還剩61頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

CHAPTER11

ENERGYMETHODS

材料力學(xué)第十一章能量方法CHAPTER11ENERGYMETHOD

§11–1GENERALEXPRESSIONSOFTHESTRAINENERGY§11–2MOHR’STHEOREM(METHODOFUNITFORCE)§11–3CATIGLIANO’STHEOREM第十一章能量方法

§11–1

變形能的普遍表達(dá)式§11–2莫爾定理(單位力法)§11–3卡氏定理§11–1

GENERALEXPRESSIONSOFTHESTRAINENERGY1、Principleofenergy:2、Calculationofthestrainenergy

ofrods:1).Calculationofthestrainenergyofrodsintensionorcompression:

Strainenergystoredintheelasticbodyisequaltotheworkdonebyexternalforces,thatis:

Methodtoanalyzeandcalculatedisplacements、deformationsandinternalforcesofdeformablebodiesbythiskindofrelationiscalledenergymethod.ENERGYMETHODorDensityofthestrainenergy:§11–1

變形能的普遍表達(dá)式一、能量原理:二、桿件變形能的計(jì)算:1.軸向拉壓桿的變形能計(jì)算:能量方法

彈性體內(nèi)部所貯存的變形能,在數(shù)值上等于外力所作的功,即

利用這種功能關(guān)系分析計(jì)算可變形固體的位移、變形和內(nèi)力的方法稱為能量方法。2.Calculationofthestrainenergyofrodsintorsion:3.Calculationofstrainenergyofrodsinbending:ENERGYMETHODorDensityofthestrainenergy:orDensityofthestrainenergy:2.扭轉(zhuǎn)桿的變形能計(jì)算:3.彎曲桿的變形能計(jì)算:能量方法3、Generalexpressionsofthestrainenergy:

Strainenergyisindependentoftheorderofloading.Deformationsduetomutuallyindependentloadmaybesummedupeachother.Forslendercolumns,thestrainenergyduetoshearingforcesmaybeneglected.ENERGYMETHODDeflectionfactorofshear三、變形能的普遍表達(dá)式:

變形能與加載次序無關(guān);相互獨(dú)立的力(矢)引起的變形能可以相互疊加。細(xì)長(zhǎng)桿,剪力引起的變形能可忽略不計(jì)。能量方法Solution:Inenergymethod(workdonebyexternalforcesisequaltothestrainenergy)①DetermineinternalforcesAENERGYMETHODBendingmoment:Torque:Example1

Asemicirclerodasshowninthefigureislieinhorizontalplane.AverticalforcePactatitspointA.

DeterminethedisplacementofpointAinverticaldirection.PROQMNMTAAPNBjTOMN[例1]圖示半圓形等截面曲桿位于水平面內(nèi),在A點(diǎn)受鉛垂力P的作用,求A點(diǎn)的垂直位移。解:用能量法(外力功等于應(yīng)變能)①求內(nèi)力能量方法APROQMTAAPNBjTO③Workdonebyexternalforcesisequaltothestrainenergy②Strainenergy:ENERGYMETHODLetthen③外力功等于應(yīng)變能②變形能:能量方法Example2DeterminethedeflectionofpointCbytheenergymethod,wherethebeamisofequalsectionandstraight.

Solution:WorkdonebyexternalforcesisequaltothestrainenergyByusingsymmetryweget:Thinking:Forthedistributedload,canwedeterminethedisplacementofpointCbythismethod?qCaaAPBfENERGYMETHODLet[例2]用能量法求C點(diǎn)的撓度。梁為等截面直梁。解:外力功等于應(yīng)變能應(yīng)用對(duì)稱性,得:思考:分布荷載時(shí),可否用此法求C點(diǎn)位移?能量方法qCaaAPBf

§11–2

MOHR’STHEOREM(METHODOFUNITFORCE)

DeterminethedisplacementfAofanarbitrarypointA.1、Provementofthetheorem:aAFigfAq(x)Figc

A0P=1q(x)fAFigb

A=1P0ENERGYMETHOD§11–2

莫爾定理(單位力法)求任意點(diǎn)A的位移fA。一、定理的證明:能量方法aA圖fAq(x)圖c

A0P=1q(x)fA圖b

A=1P0

Mohr’stheorem(methodofunitforce)2、GeneralformofMohr’stheoremENERGYMETHOD

莫爾定理(單位力法)二、普遍形式的莫爾定理能量方法3、WhatwemustpayattentiontoasweapplyMohr’stheorem:④CoordinateofM0(x)mustbecoincidewiththatofM(x).Foreachsegmentthecoordinatemaybesetupfreely.⑤Mohr’sintegrationmustbethroughthewholestructure.②M0:Theinternalforceofthestructureasweactageneralizedunitforcealongthedirection,ofthegeneralizeddisplacementthatistobedetermined,wheretheappliedforceistakenout.①M(fèi)(x):Theinternalforceofthestructureactedbyoriginalloads.③Theproductoftheappliedgeneralizedunitforceandthegeneralizeddisplacementtobedetermineddeterminedmustbeofthedimensionofwork.

ENERGYMETHOD三、使用莫爾定理的注意事項(xiàng):④M0(x)與M(x)的坐標(biāo)系必須一致,每段桿的坐標(biāo)系可自由建立。⑤莫爾積分必須遍及整個(gè)結(jié)構(gòu)。②M0——去掉主動(dòng)力,在所求廣義位移

點(diǎn),沿所求

廣義位移

的方向加廣義單位力

時(shí),結(jié)構(gòu)產(chǎn)生的內(nèi)力。①M(fèi)(x):結(jié)構(gòu)在原載荷下的內(nèi)力。③所加廣義單位力與所求廣義位移之積,必須為功的量綱。能量方法Example3

DeterminethedisplacementandtheangleofrotationofpointCbytheenergymethod.Solution:①Plotthediagramofthestructureactedbytheunitload

②DeterminetheinternalforceBAaaCqBAaaC0P=1xENERGYMETHOD[例3]用能量法求C點(diǎn)的撓度和轉(zhuǎn)角。梁為等截面直梁。解:①畫單位載荷圖②求內(nèi)力能量方法BAaaCqBAaaC0P=1xSymmetry③DeformationBAaaC0P=1BAaaCqxENERGYMETHOD()③變形能量方法BAaaC0P=1BAaaCqx()④Determinetheangleofrotation.Setupthecoordinateagain(asshowninthefigure)

qBAaaCx2x1BAaaCMC0=1

d)()(

)()()(00)(00òò+=aBCaABxEIxMxMdxEIxMxMENERGYMETHOD=0④求轉(zhuǎn)角,重建坐標(biāo)系(如圖)

能量方法qBAaaCx2x1BAaaCMC0=1

d)()(

)()()(00)(00òò+=aBCaABxEIxMxMdxEIxMxM=0Solution:①Plotthediagramofthestructureactedbyaunitload

②Determinetheinternalforce510

20A300P=60NBx500Cx1510

20A300Bx500C=1P0ENERGYMETHODExample4Afoldingrodisshowninthefigure.AbearingisatpositionAandtherodmayrotatefreelyinthebearingbutcannotmoveupanddown.Knowing:E=210Gpa,G=0.4E,DeterminetheverticaldisplacementofpointB.[例4]拐桿如圖,A處為一軸承,允許桿在軸承內(nèi)自由轉(zhuǎn)動(dòng),但不能上下移動(dòng),已知:E=210Gpa,G=0.4E,求B點(diǎn)的垂直位移。解:①畫單位載荷圖②求內(nèi)力能量方法510

20A300P=60NBx500Cx1510

20A300Bx500C=1P0③DeterminethedeformationENERGYMETHOD()③變形能量方法()§11–3CATIGLIANO’STHEOREMGive

Pn

anincrementdPn

,then:1)FirstapplyforcesP1、

P2、???、Pn

onthebody,then:2).FirstapplytheforcedPn

onthebody,then:1、Provementofthetheorem

dnENERGYMETHOD§11–3

卡氏定理給Pn

以增量dPn

,則:1.先給物體加P1、

P2、???、

Pn

個(gè)力,則:2.先給物體加力dPn

,則:一、定理證明

能量方法dnAgainapplyforces

P1、

P2、???、Pn,then:

dnn=nPU??dSecondCastigliano’stheoremItalianengineer—AlbertoCastigliano,1847~1884ENERGYMETHOD再給物體加P1、

P2、???、Pn個(gè)力,則:

能量方法dnn=nPU??d第二卡氏定理

意大利工程師—阿爾伯托·卡斯提安諾(AlbertoCastigliano,1847~1884)2、whatwemustpayattentiontoasweapplyCatigliano’stheorem:①U—Linearelasticstrainenergyofthewholestructureactedbyexternalloads②

Pnisconsideredasavariable.ThereactionsandthestrainenergyofthestructureandsoonmustbeallexpressedasthefunctionofPn.③

nisthedeformationofthepointactedbyPn

anditisalongthedirectionofPn.④Ifthereisno

Pn

correspondingto

nwemay firstactaPn

along

nanddeterminethepartialderivativeandthenletPn

bezero.dnENERGYMETHOD二、使用卡氏定理的注意事項(xiàng):①U——整體結(jié)構(gòu)在外載作用下的線彈性變形能②

Pn視為變量,結(jié)構(gòu)反力和變形能等都必須表示為Pn的函數(shù)③

n為Pn

作用點(diǎn)的沿Pn

方向的變形。④當(dāng)無與

n對(duì)應(yīng)的Pn

時(shí),先加一沿

n

方向的Pn

,求偏導(dǎo)后,再令其為零。能量方法dn3、Castigliano’stheoremforspecialstructures(rods):ENERGYMETHOD三、特殊結(jié)構(gòu)(桿)的卡氏定理:能量方法Example5Thestructureisshowninthefigure.DeterminethedeflectionandtheangleofrotationofthesectionA

byCatigliano’stheorem.③Determinethedeformation①DeterminetheinternalforceSolution:Determinethedeflection.Setupthecoordinate②Determinethepartialderivativeoftheinternalforcewithrespectto

PAALPEIxO

ENERGYMETHOD()[例5]結(jié)構(gòu)如圖,用卡氏定理求A

面的撓度和轉(zhuǎn)角。③變形①求內(nèi)力解:求撓度,建坐標(biāo)系②將內(nèi)力對(duì)PA求偏導(dǎo)能量方法ALPEIxO

()Determinetheangle

Aofrotation①DeterminetheinternalforceThereisnothegeneralizedforcecorrespondingto

A.wemayactone.“Negativesign”expressesthat

AiscontrarytothedirectionoftheactedgeneralizedforceMA()②DeterminethepartialderivativeoftheinternalforceM(x)withrespecttoMAandletMA=0.③Determinethedeformation(Note:MA=0)LxO

APMAENERGYMETHOD求轉(zhuǎn)角

A①求內(nèi)力沒有與

A向相對(duì)應(yīng)的力(廣義力),加之?!柏?fù)號(hào)”說明

A與所加廣義力MA反向。()②將內(nèi)力對(duì)MA求偏導(dǎo)后,令M

A=0③求變形(注意:MA=0)能量方法LxO

APMAExample

6

DeterminethedeflectioncurveofthebeamshowninthefigurebyCastigliano’stheorem.Solution:Determinethedeflectioncurve—thedeflectionofanarbitrarypointonthebeamf(x).①Determinetheinternalforces②DeterminethepartialderivativeoftheinternalforceM(x)withrespecttoPxandletPx=0.

Thereisnothegeneralizedforcecorrespondingtof(x).wemayactone.

PALxBPx

CfxOx1ENERGYMETHOD[例6

]結(jié)構(gòu)如圖,用卡氏定理求梁的撓曲線。解:求撓曲線——任意點(diǎn)的撓度f(x)①求內(nèi)力②將內(nèi)力對(duì)Px求偏導(dǎo)后,令Px=0沒有與f(x)相對(duì)應(yīng)的力,加之。能量方法PALxBPx

CfxOx1③Determinethedeformation(Note:Px=0)ENERGYMETHOD③變形(注意:Px=0)能量方法Example7

Abeamwithequalsectionisshowninthefigure.Determinethedeflectionf(x)ofpointBbyCatigliano’stheorem.②determineinternalforcesSolution:1.Determineredundantreactionsaccordingto③DeterminethepartialderivativeoftheinternalforcewithrespecttoRC.

①TakeaprimarybeamasshowninthePCAL0.5LBfxOPCAL0.5LBRCENERGYMETHODfigure.[例7]等截面梁如圖,用卡氏定理求B

點(diǎn)的撓度。②求內(nèi)力解:1.依求多余反力,③將內(nèi)力對(duì)RC求偏導(dǎo)①取靜定基如圖能量方法PCAL0.5LBfxOPCAL0.5LBRC④DeformationENERGYMETHODSo④變形能量方法2.Determine②Determinethepartialderivativeoftheinternalforcewithrespect①DeterminetheinternalforcesENERGYMETHODtoP.2.求②將內(nèi)力對(duì)P求偏導(dǎo)①求內(nèi)力能量方法③DeformationENERGYMETHOD()③變形能量方法()③DeterminethedeformationSolution:①Plotthediagramofthestructureactedbyunitload②DeterminetheinternalforceExample

8

Aframeisshowninthefigure.DeterminethedistancebetweensectionAandsectionB

afterthedeformation.PPAB11ENERGYMETHOD③變形解:①畫單位載荷圖②求內(nèi)力[例8

]結(jié)構(gòu)如圖,求A、B兩面的拉開距離。PPAB能量方法1159

Chapter11Exercises1.Astraightrodwiththetension(compression)rigidityEIissubjectedforcesshowninthefigure.Maythestrainenergybeexpressedas

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論