




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TwoDimensionalGaugeTheories
and
QuantumIntegrableSystems
NikitaNekrasovIHESImperialCollegeApril10,2008
TwoDimensionalGaugeTheorie1BasedonNN,S.Shatashvili,toappearPriorwork:E.Witten,1992;A.Gorsky,NN;J.Minahan,A.Polychronakos;M.Douglas;~1993-1994;A.Gerasimov~1993;G.Moore,NN,S.Shatashvili~1997-1998;A.Losev,NN,S.Shatashvili~1997-1998;A.Gerasimov,S.Shatashvili~2006-2007BasedonNN,S.Shatashvili,to2
Wearegoingtorelate
2,3,and4dimensional
susygaugetheories
withfoursupersymmetries
N=1d=4
AndquantumintegrablesystemssolublebyBetheAnsatztechniques.
Wearegoingtorelate
2,3,3
Mathematicallyspeaking,thecohomology,K-theoryandellipticcohomologyofvariousgaugetheorymodulispaces,likemoduliofflatconnectionsandinstantonsAndquantumintegrablesystemssolublebyBetheAnsatztechniques.
Mathematicallyspeaking,the4Forexample,weshallrelatetheXXXHeisenbergmagnetand2dN=2SYMtheorywithsomematterForexample,weshallrelatet5(pre-)HistoryIn1992E.WittenstudiedtwodimensionalYang-Millstheorywiththegoaltounderstandtherelationbetweenthephysicalandtopologicalgravitiesin2d.(pre-)History6(pre-)HistoryTherearetwointerestingkindsofTwodimensionalYang-Millstheories(pre-)HistoryTherearetwo7Yang-Millstheoriesin2d(1)
CohomologicalYM=twistedN=2super-Yang-Millstheory,withgaugegroupG,whoseBPS(orTFT)sectorisrelatedtotheintersectiontheoryonthemodulispaceMGofflatG-connectionsonaRiemannsurfaceYang-Millstheoriesin2d(1)8Yang-Millstheoriesin2dN=2super-Yang-MillstheoryFieldcontent:
Yang-Millstheoriesin2dN=2s9Yang-Millstheoriesin2d(2)PhysicalYM=N=0Yang-Millstheory,withgaugegroupG;ThemodulispaceMGofflatG-connections=minimaoftheaction;Thetheoryisexactlysoluble(A.Migdal)withthehelpofthePolyakovlatticeYMactionYang-Millstheoriesin2d(2)10Yang-Millstheoriesin2dPhysicalYMFieldcontent:Yang-Millstheoriesin2dPhysi11Yang-Millstheoriesin2dWittenfoundawaytomaptheBPSsectoroftheN=2theorytotheN=0theory.Theresultis:Yang-Millstheoriesin2dWitte12Yang-Millstheoriesin2dTwodimensionalYang-MillspartitionfunctionisgivenbytheexplicitsumYang-Millstheoriesin2dTwod13Yang-Millstheoriesin2dInthelimitthepartitionfunctioncomputesthevolumeofMG
Yang-Millstheoriesin2dInth14Yang-Millstheoriesin2dWitten’sapproach:addtwistedsuperpotentialanditsconjugateYang-Millstheoriesin2dWitte15Yang-Millstheoriesin2dTakealimitInthelimitthefieldsareinfinitelymassiveandcanbeintegratedout:oneisleftwiththefieldcontentofthephysicalYMtheory
Yang-Millstheoriesin2dTake16Yang-Millstheoriesin2dBothphysicalandcohomologicalYang-Millstheoriesdefinetopologicalfieldtheories(TFT)Yang-Millstheoriesin2dBoth17Yang-Millstheoriesin2dBothphysicalandcohomologicalYang-Millstheoriesdefinetopologicalfieldtheories(TFT)Vacuumstates+deformations=quantummechanicsYang-Millstheoriesin2dBoth18YMin2dandparticlesonacirclePhysicalYMisexplicitlyequivalenttoaquantummechanicalmodel:freefermionsonacircleCanbecheckedbyapartitionfunctiononatwo-torusGrossDouglasYMin2dandparticlesonaci19YMin2dandparticlesonacirclePhysicalYMisexplicitlyequivalenttoaquantummechanicalmodel:freefermionsonacircleStatesarelabelledbythepartitions,forG=U(N)YMin2dandparticlesonaci20YMin2dandparticlesonacircleForN=2YMthesefreefermionsonacircleLabelthevacuaofthetheorydeformedbytwistedsuperpotentialWYMin2dandparticlesonaci21YMin2dandparticlesonacircleThefermionscanbemadeinteractingbyaddingalocalizedmatter:forexampleatime-likeWilsonloopinsomerepresentationVofthegaugegroup:YMin2dandparticlesonaci22YMin2dandparticlesonacircleOnegetsCalogero-Sutherland(spin)particlesonacircle(1993-94)A.Gorsky,NN;J.Minahan,A.Polychronakos;YMin2dandparticlesonaci23HistoryIn1997G.Moore,NNandS.Shatashvilistudiedintegralsovervarioushyperkahlerquotients,withtheaimtounderstandinstantonintegralsinfourdimensionalgaugetheoriesHistoryIn1997G.Moore,NNand24HistoryIn1997G.Moore,NNandS.Shatashvilistudiedintegralsovervarioushyperkahlerquotients,withtheaimtounderstandinstantonintegralsinfourdimensionalgaugetheoriesThiseventuallyledtothederivationin2002oftheSeiberg-WittensolutionofN=2d=4theoryInspiredbytheworkofH.NakajimaHistoryIn1997G.Moore,NNand25Yang-Mills-HiggstheoryAmongvariousexamples,MNSstudiedHitchin’smodulispaceMHYang-Mills-HiggstheoryAmongv26Yang-Mills-HiggstheoryUnlikethecaseoftwo-dimensionalYang-MillstheorywherethemodulispaceMGiscompact,Hitchin’smodulispaceisnon-compact(itisroughlyT*MGmodulosubtleties)andthevolumeisinfinite.Yang-Mills-HiggstheoryUnlike27Yang-Mills-HiggstheoryInordertocurethisinfnityinareasonablewayMNSusedtheU(1)symmetryofMHThevolumebecomesaDH-typeexpression:WhereHistheHamiltonianYang-Mills-HiggstheoryInorde28Yang-Mills-HiggstheoryUsingthesupersymmetryandlocalizationtheregularizedvolumeof
MHwascomputedwiththeresultYang-Mills-HiggstheoryUsingt29Yang-Mills-HiggstheoryWheretheeigenvaluessolvetheequations:Yang-Mills-HiggstheoryWhere30YMHandNLSTheexpertswouldimmediatelyrecognisetheBetheansatz(BA)equationsforthenon-linearSchroedingertheory(NLS)NLS=largespinlimitoftheSU(2)XXXspinchainYMHandNLSTheexpertswouldi31YMHandNLSMoreovertheNLSHamiltoniansarethe0-observablesofthetheory,likeTheVEVoftheobservable=TheeigenvalueoftheHamiltonianYMHandNLSMoreovertheNLSHa32YMHandNLSSince1997nothingcameoutofthisresult.Itcouldhavebeensimplyacoincidence.…….YMHandNLSSince1997nothing33In2006
A.GerasimovandS.ShatashvilihaverevivedthesubjectHistoryIn2006
A.GerasimovandS.Sha34YMHandinteractingparticlesGSnoticedthatYMHtheoryviewedasTFTisequivalenttothequantumYangsystem:Nparticlesonacirclewithdelta-interaction:YMHandinteractingparticlesG35YMHandinteractingparticlesThus:YMwiththematter--fermionswithpair-wiseinteractionYMHandinteractingparticlesT36HistoryMoreimportantly,GSsuggestedthatTFT/QISequivalenceismuchmoreuniversalHistoryMoreimportantly,37TodayWeshallrederivetheresultofMNSfromamodernperspectiveGeneralizetocovervirtuallyallBAsolublesystemsbothwithfiniteandinfinitespinSuggestnaturalextensionsoftheBAequationsTodayWeshallrederivetheres38HitchinequationsSolutionscanbeviewedasthesusyfieldconfigurationsfortheN=2gaugedlinearsigmamodelForadjoint-valuedlinearfieldsHitchinequationsSolutionscan39HitchinequationsThemodulispaceMHofsolutionsisahyperkahlermanifoldTheintegralsoverMHarecomputedbythecorrelationfunctionsofanN=2d=2susygaugetheoryHitchinequationsThemodulisp40HitchinequationsThekahlerformonMHcomesfromtwistedtreelevelsuperpotentialTheepsilon-termcomesfromatwistedmassofthemattermultipletHitchinequations41GeneralizationTakeanN=2d=2gaugetheorywithmatter,InsomerepresentationR
ofthegaugegroupGGeneralizationTakeanN=2d=242GeneralizationIntegrateoutthematterfields,computetheeffective(twisted)super-potentialontheCoulombbranchGeneralizationIntegrateoutth43MathematicallyspeakingConsiderthemodulispaceMRofR-HiggspairswithgaugegroupGUptotheactionofthecomplexifiedgaugegroupGCMathematicallyspeakingConside44MathematicallyspeakingStabilityconditions:UptotheactionofthecompactgaugegroupGMathematicallyspeakingStabili45MathematicallyspeakingPushforwardtheunitclassdowntothemodulispaceMGofGC-bundlesEquivariantlywithrespecttotheactionoftheglobalsymmetrygroupKonMR
MathematicallyspeakingPushfor46MathematicallyspeakingThepushforwardcanbeexpressedintermsoftheDonaldson-likeclassesofthemodulispaceMG2-observablesand0-observablesMathematicallyspeakingThepus47MathematicallyspeakingThepushforwardcanbeexpressedintermsoftheDonaldson-likeclassesofthemodulispaceMG2-observablesand0-observablesMathematicallyspeakingThepus48MathematicallyspeakingThemassesaretheequivariantparametersFortheglobalsymmetrygroupK
MathematicallyspeakingThemas49VacuaofthegaugetheoryDuetoquantizationofthegaugefluxForG=U(N)VacuaofthegaugetheoryDuet50VacuaofthegaugetheoryEquationsfamiliarfromyesterday’slectureForG=U(N)partitionsVacuaofthegaugetheoryEquat51VacuaofthegaugetheoryFamiliarexample:CPNmodel(N+1)chiralmultipletofcharge+1Qii=1,…,N+1U(1)gaugegroupN+1vacuumFieldcontent:Effectivesuperpotential:VacuaofthegaugetheoryFamil52VacuaofgaugetheoryGaugegroup:G=U(N)Matterchiralmultiplets:1
adjoint, massfundamentals, massanti-fundamentals, massFieldcontent:Anotherexample:VacuaofgaugetheoryGaugegro53VacuaofgaugetheoryEffectivesuperpotential:VacuaofgaugetheoryEffective54VacuaofgaugetheoryEquationsforvacua:VacuaofgaugetheoryEquations55VacuaofgaugetheoryNon-anomalouscase:Redefine:VacuaofgaugetheoryNon-anoma56VacuaofgaugetheoryVacua:VacuaofgaugetheoryVacua:57Gaugetheory--spinchainIdenticaltotheBetheansatzequationsforspinXXXmagnet:Gaugetheory--spinchainIden58Gaugetheory--spinchainVacua=eigenstatesoftheHamiltonian:Gaugetheory--spinchainVacu59TableofdualitiesXXXspinchainSU(2)LspinsNexcitationsU(N)d=2N=2Chiralmultiplets:1adjointLfundamentalsLanti-fund.Specialmasses!TableofdualitiesXXXspincha60Tableofdualities:mathematicallyspeakingXXXspinchainSU(2)LspinsNexcitations(Equivariant)IntersectiontheoryonMR
for
Tableofdualities:mathematic61TableofdualitiesXXZspinchainSU(2)LspinsNexcitationsU(N)d=3N=1Compactifiedonacircle
Chiralmultiplets:1adjointLfundamentalsLanti-fund.TableofdualitiesXXZspincha62Tableofdualities:
mathematicallyspeakingXXZspinchainSU(2)LspinsNexcitationsEquivariantK-theoryofthemodulispace
MRTableofdualities:
mathemati63TableofdualitiesXYZspinchainSU(2),L=2NspinsNexcitationsU(N)d=4N=1Compactifiedona2-torus=ellipticcurveE
Chiralmultiplets:1adjointL=2NfundamentalsL=2Nanti-fund.Masses=wilsonloopsoftheflavourgroup=pointsontheJacobianofETableofdualitiesXYZspincha64Tableofdualities:
mathematicallyspeakingXYZspinchainSU(2),L=2NspinsNexcitationsEllipticgenusofthemodulispaceMRMasses=KbundleoverE=pointsontheBunKofETableofdualities:
mathemati65TableofdualitiesItisremarkablethatthespinchainhaspreciselythosegeneralizations:rational(XXX),trigonometric(XXZ)andelliptic(XYZ)thatcanbematchedtothe2,3,and4dimcases.
TableofdualitiesItisremark66AlgebraicBetheAnsatzThespinchainissolvedalgebraicallyusingcertainoperators,WhichobeyexchangecommutationrelationsFaddeevetal.Faddeev-Zamolodchikovalgebra…AlgebraicBetheAnsatzThespin67AlgebraicBetheAnsatzTheeigenvectors,Bethevectors,areobtainedbyapplyingtheseoperatorstothe?
fake
?vacuum.AlgebraicBetheAnsatzTheeige68ABAvsGAUGETHEORYForthespinchainitisnaturaltofixL=totalnumberofspinsandconsidervariousN=excitationlevelsInthegaugetheorycontextNisfixed.ABAvsGAUGETHEORYForthespi69ABAvsGAUGETHEORYHowever,ifthetheoryisembeddedintostringtheoryviabranerealizationthenchangingNiseasy:bringinanextrabrane.Hanany-Hori’02ABAvsGAUGETHEORYHowever,if70ABAvsGAUGETHEORYMathematicallyspeakingWeclaimthattheAlgebraicBetheAnsatzismostnaturallyrelatedtothederivedcategoryofthecategoryofcoherentsheavesonsomelocalCYABAvsGAUGETHEORYMathematica71ABAvsSTRINGTHEORYTHUS:BisforBRANE!isforlocation!ABAvsSTRINGTHEORYTHUS:i72MoregeneralspinchainsTheSU(2)spinchainhasgeneralizationstoothergroupsandrepresentations.IquotethecorrespondingBetheansatzequationsfromN.ReshetikhinMoregeneralspinchainsTheSU73Generalgroups/repsForsimply-lacedgroupHofrankrGeneralgroups/repsForsimply-74Generalgroups/repsForsimply-lacedgroupHofrankrLabelrepresentationsoftheYangianofHA.N.Kirillov-N.ReshetikhinmodulesCartanmatrixofHGeneralgroups/repsForsimply-75Generalgroups/reps
fromGAUGETHEORYTaketheDynkindiagramcorrespondingtoHAsimply-lacedgroupofrankrGeneralgroups/reps
fromGAUGE76
QUIVERGAUGETHEORYSymmetries
QUIVERGAUGETHEORYSymmetries77
QUIVERGAUGETHEORYSymmetries
QUIVERGAUGETHEORYSymmetries78
QUIVERGAUGETHEORY
ChargedmatterAdjointchiralmultipletFundamentalchiralmultipletAnti-fundamentalchiralmultipletBi-fundamentalchiralmultiplet
QUIVERGAUGETHEORY
Chargedm79QUIVERGAUGETHEORYMatterfields:adjointsQUIVERGAUGETHEORYMatterfiel80QUIVERGAUGETHEORYMatterfields:fundamentals+anti-fundamentalsQUIVERGAUGETHEORYMatterfiel81QUIVERGAUGETHEORYMatterfields:bi-fundamentalsQUIVERGAUGETHEORYMatterfiel82QUIVERGAUGETHEORYQuivergaugetheory:fullcontentQUIVERGAUGETHEORYQuivergaug83QUIVERGAUGETHEORY:MASSESAdjointsiQUIVERGAUGETHEORY:MASSESAdj84QUIVERGAUGETHEORY:MASSESFundamentalsAnti-fundamentalsia=1,….,Li
QUIVERGAUGETHEORY:MASSESFun85QUIVERGAUGETHEORY:MASSESBi-fundamentalsijQUIVERGAUGETHEORY:MASSESBi-86QUIVERGAUGETHEORYWhatissospecialaboutthesemasses?QUIVERGAUGETHEORYWhatisso87QUIVERGAUGETHEORYFromthegaugetheorypointofviewnothingspecial…..QUIVERGAUGETHEORYFromthega88QUIVERGAUGETHEORYThemasspuzzle!QUIVERGAUGETHEORYThemasspu89ThemasspuzzleTheBetheansatz--likeequationsCanbewrittenforanarbitrarymatrixThemasspuzzleTheBetheansat90ThemasspuzzleHowevertheYangiansymmetryY(H)wouldgetreplacedbysomeuglyinfinite-dimensional?
free
?algrebawithoutnicerepresentations
ThemasspuzzleHowevertheYan91ThemasspuzzleThereforeweconcludethatourchoiceofmassesisdictatedbythehiddensymmetry--thatofthedualspinchain
ThemasspuzzleThereforeweco92TheStandardModelhasmanyfreeparametersAmongthemarethefermionmassesIstherea(hidden)symmetryprinciplebehindthem?TheStandardModelhasmanyfr93TheStandardModelhasmanyfreeparametersInthesupersymmetricmodelsweconsideredthemasstuningcanbe?
explained
?usingadualitytosomequantumintegrablesystemTheStandardModelhasmanyfr94Furthergeneralizations:
Superpotential
fromprepotentialTreelevelpartInducedbytwistFluxsuperpotential(Losev,NN,Shatashvili’97)TheN=2*theoryonR2XS2Furthergeneralizations:
Super95Superpotential
fromprepotentialMagneticfluxElectricfluxInthelimitofvanishingS2themagneticfluxshouldvanishSuperpotential
fromprepotent96InstantoncorrectedBAequationsEffectiveS-matrixcontains2-body,3-body,…interactionsInstantoncorrectedBAequatio97InstantoncorrectedBAe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 民企招聘活動(dòng)方案
- 畢業(yè)整容活動(dòng)策劃方案
- 武漢足球接龍活動(dòng)方案
- 正家風(fēng)傳家訓(xùn)活動(dòng)方案
- 植樹節(jié)小區(qū)游園活動(dòng)方案
- 植樹節(jié)公司活動(dòng)方案
- 水帶打靶活動(dòng)方案
- 永濟(jì)燒烤活動(dòng)方案
- 河北省各地紀(jì)念活動(dòng)方案
- 汽車贈(zèng)品活動(dòng)方案
- 2025年第二屆全國(guó)安康杯安全生產(chǎn)知識(shí)競(jìng)賽題庫(kù)及答案(共190題)
- 護(hù)士法律法規(guī)知識(shí)培訓(xùn)課件
- DB11-T 2398-2025 水利工程巡視檢查作業(yè)規(guī)范
- 2025年光伏行業(yè)上半年發(fā)展回顧與下半年形勢(shì)展望
- 輸血管理相關(guān)制度
- 2025至2031年中國(guó)紙巾用香精行業(yè)投資前景及策略咨詢研究報(bào)告
- 老年性癡呆病人的護(hù)理與管理
- 無固定期限勞工合同通知書
- GB/T 45161-2024液氫容器用安全閥技術(shù)規(guī)范
- 《中醫(yī)推拿按摩教程》課件
- 煤炭采購(gòu)及運(yùn)輸?shù)暮弦?guī)性流程
評(píng)論
0/150
提交評(píng)論