![2024屆北京市延慶區(qū)九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view/6e20faea93c9fe408ad006b40dde4e1b/6e20faea93c9fe408ad006b40dde4e1b1.gif)
![2024屆北京市延慶區(qū)九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view/6e20faea93c9fe408ad006b40dde4e1b/6e20faea93c9fe408ad006b40dde4e1b2.gif)
![2024屆北京市延慶區(qū)九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view/6e20faea93c9fe408ad006b40dde4e1b/6e20faea93c9fe408ad006b40dde4e1b3.gif)
![2024屆北京市延慶區(qū)九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view/6e20faea93c9fe408ad006b40dde4e1b/6e20faea93c9fe408ad006b40dde4e1b4.gif)
![2024屆北京市延慶區(qū)九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view/6e20faea93c9fe408ad006b40dde4e1b/6e20faea93c9fe408ad006b40dde4e1b5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆北京市延慶區(qū)九年級數(shù)學第一學期期末教學質量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.在平面直角坐標系中,點P(﹣2,7)關于原點的對稱點P'在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.由二次函數(shù)可知()A.其圖象的開口向下 B.其圖象的對稱軸為直線C.其頂點坐標為 D.當時,隨的增大而增大3.下列多邊形一定相似的是()A.兩個平行四邊形 B.兩個矩形C.兩個菱形 D.兩個正方形4.下列事件中,屬于必然事件的是()A.明天我市下雨B.拋一枚硬幣,正面朝下C.購買一張福利彩票中獎了D.擲一枚骰子,向上一面的數(shù)字一定大于零5.拋物線y=(x﹣1)2﹣2的頂點是()A.(1,﹣2) B.(﹣1,2) C.(1,2) D.(﹣1,﹣2)6.如圖,在中,D在AC邊上,,O是BD的中點,連接AO并延長交BC于E,則()A.1:2 B.1:3 C.1:4 D.2:37.為了解圭峰會城九年級女生身高情況,隨機抽取了圭峰會城九年級100名女生,她們的身高x(cm)統(tǒng)計如下:組別(cm)x<150150≤x<155155≤x<160160≤x<165x≥165頻數(shù)22352185根據(jù)以上結果,隨機抽查圭峰會城九年級1名女生,身高不低于155cm的概率是()A.0.25 B.0.52 C.0.70 D.0.758.二次函數(shù)的圖象與y軸的交點坐標是()A.(0,1) B.(1,0) C.(-1,0) D.(0,-1)9.已知sinαcosα=,且0°<α<45°,則sinα-cosα的值為()A. B.- C. D.±10.如圖,在正方形網(wǎng)格中,每個小正方形的邊長是個單位長度,以點為位似中心,在網(wǎng)格中畫,使與位似,且與的位似比為,則點的坐標可以為()A. B. C. D.11.在下列圖形中,不是中心對稱圖形的是()A. B. C. D.12.關于x的一元二次方程x2+8x+q=0有兩個不相等的實數(shù)根,則q的取值范圍是()A.q<16 B.q>16C.q≤4 D.q≥4二、填空題(每題4分,共24分)13.已知x=1是一元二次方程x2﹣3x+a=0的一個根,則方程的另一個根為_____.14.如圖,一條河的兩岸有一段是平行的,在河的南岸邊每隔5米有一棵樹,在北岸邊每隔50米有一根電線桿.小麗站在離南岸邊15米的P點處看北岸,發(fā)現(xiàn)北岸相鄰的兩根電線桿恰好被南岸的兩棵樹遮住,并且在這兩棵樹之間還有三棵樹,則河寬為________米.15.點P(4,﹣6)關于原點對稱的點的坐標是_____.16.△ABC中,∠C=90°,AC=6,BC=8,則sin∠A的值為__________.17.一布袋里裝有4個紅球、5個黃球、6個黑球,這些球除顏色外其余都相同,那么從這個布袋里摸出一個黃球的概率為__________.18.如圖,點在函數(shù)的圖象上,都是等腰直角三角形.斜邊都在軸上(是大于或等于2的正整數(shù)),點的坐標是______.三、解答題(共78分)19.(8分)如圖,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點E.連接AC、OC、BC.(1)求證:∠ACO=∠BCD.(2)若EB=8cm,CD=24cm,求⊙O的直徑.20.(8分)已知:在中,.(1)求作:的外接圓.(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)若的外接圓的圓心到邊的距離為4,,則.21.(8分)如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的邊QM在BC上,其余兩個項點P,N分別在AB,AC上.(1)當矩形的邊PN=PQ時,求此時矩形零件PQMN的面積;(2)求這個矩形零件PQMN面積S的最大值.22.(10分)如圖,已知拋物線y=x2-x-3與x軸的交點為A、D(A在D的右側),與y軸的交點為C.(1)直接寫出A、D、C三點的坐標;(2)若點M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點M的坐標;(3)設點C關于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標;若不存在,請說明理由.23.(10分)函數(shù)與函數(shù)(、為不等于零的常數(shù))的圖像有一個公共點,其中正比例函數(shù)的值隨的值增大而減小,求這兩個函數(shù)的解析式.24.(10分)如圖,是的直徑,過的中點.,垂足為.(1)求證:直線是的切線;(2)若,的直徑為,求的長及的值.25.(12分)某地為打造宜游環(huán)境,對旅游道路進行改造.如圖是風景秀美的觀景山,從山腳B到山腰D沿斜坡已建成步行道,為方便游客登頂觀景,欲從D到A修建電動扶梯,經(jīng)測量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D處測得山頂A的仰角為45°.求電動扶梯DA的長(結果保留根號).26.如圖,拋物線過點和,點為線段上一個動點(點與點不重合),過點作垂直于軸的直線與直線和拋物線分別交于點.(1)求此拋物線的解析式;(2)若點是的中點,則求點的坐標;(3)若以點為頂點的三角形與相似,請直接寫出點的坐標.
參考答案一、選擇題(每題4分,共48分)1、D【分析】平面直角坐標系中任意一點,關于原點對稱的點的坐標是,即關于原點對稱的點的橫縱坐標都互為相反數(shù),這樣就可以確定其對稱點所在的象限.【題目詳解】∵點關于原點的對稱點的坐標是,∴點關于原點的對稱點在第四象限.故選:D.【題目點撥】本題比較容易,考查平面直角坐標系中關于原點對稱的兩點的坐標之間的關系,是需要識記的內(nèi)容.2、B【分析】根據(jù)二次函數(shù)的圖像與性質即可得出答案.【題目詳解】A:a=3,所以開口向上,故A錯誤;B:對稱軸=4,故B正確;C:頂點坐標為(4,-2),故C錯誤;D:當x<4時,y隨x的增大而減小,故D錯誤;故答案選擇D.【題目點撥】本題考查的是二次函數(shù),比較簡單,需要熟練掌握二次函數(shù)的圖像與性質.3、D【分析】利用相似多邊形的定義:對應邊成比例,對應角相等的兩個多邊形相似,逐一分析各選項可得答案.【題目詳解】解:兩個平行四邊形,既不滿足對應邊成比例,也不滿足對應角相等,所以A錯誤,兩個矩形,滿足對應角相等,但不滿足對應邊成比例,所以B錯誤,兩個菱形,滿足對應邊成比例,但不滿足對應角相等,所以C錯誤,兩個正方形,既滿足對應邊成比例,也滿足對應角相等,所以D正確,故選D.【題目點撥】本題考查的是相似多邊形的定義與判定,掌握定義法判定多邊形相似是解題的關鍵.4、D【分析】根據(jù)定義進行判斷.【題目詳解】解:必然事件就是一定發(fā)生的事件,隨機事件是可能發(fā)生也可能不發(fā)生的事件,由必然事件和隨機事件的定義可知,選項A,B,C為隨機事件,選項D是必然事件,故選D.【題目點撥】本題考查必然事件和隨機事件的定義.5、A【分析】根據(jù)頂點式的坐標特點直接寫出頂點坐標即可解決.【題目詳解】解:∵y=(x﹣1)2﹣2是拋物線解析式的頂點式,根據(jù)頂點式的坐標特點可知,頂點坐標為(1,﹣2).故選:A.【題目點撥】本題考查了頂點式,解決本題的關鍵是正確理解二次函數(shù)頂點式中頂點坐標的表示方法.6、B【分析】過O作BC的平行線交AC與G,由中位線的知識可得出,根據(jù)已知和平行線分線段成比例得出,再由同高不同底的三角形中底與三角形面積的關系可求出的比.【題目詳解】解:如圖,過O作,交AC于G,∵O是BD的中點,∴G是DC的中點.又,設,又,,故選B.【題目點撥】考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運用中位線定理和三角形面積公式.7、D【分析】直接利用不低于155cm的頻數(shù)除以總數(shù)得出答案.【題目詳解】∵身高不低于155cm的有52+18+5=1(人),∴隨機抽查圭峰會城九年級1名女生,身高不低于155cm的概率是:=0.1.故選:D.【題目點撥】本題考查了概率公式,正確應用概率公式是解題關鍵.8、D【題目詳解】當x=0時,y=0-1=-1,∴圖象與y軸的交點坐標是(0,-1).故選D.9、B【分析】由題意把已知條件兩邊都乘以2,再根據(jù)sin2α+cos2α=1,進行配方,然后根據(jù)銳角三角函數(shù)值求出cosα與sinα的取值范圍,從而得到sinα-cosα<0,最后開方即可得解.【題目詳解】解:∵sinαcosα=,∴2sinα?cosα=,∴sin2α+cos2α-2sinα?cosα=1-,即(sinα-cosα)2=,∵0°<α<45°,∴<cosα<1,0<sinα<,∴sinα-cosα<0,∴sinα-cosα=-.故選:B.【題目點撥】本題考查同角的三角函數(shù)的關系,利用好sin2α+cos2α=1,并求出sinα-cosα<0是解題的關鍵.10、B【解題分析】利用位似性質和網(wǎng)格特點,延長CA到A1,使CA1=2CA,延長CB到B1,使CB1=2CB,則△A1B1C1滿足條件;或延長AC到A1,使CA1=2CA,延長BC到B1,使CB1=2CB,則△A1B1C1也滿足條件,然后寫出點B1的坐標.【題目詳解】解:由圖可知,點B的坐標為(3,-2),
如圖,以點C為位似中心,在網(wǎng)格中畫△A1B1C1,使△A1B1C1與△ABC位似,且△A1B1C1與△ABC的位似比為2:1,
則點B1的坐標為(4,0)或(-8,0),位于題目圖中網(wǎng)格點內(nèi)的是(4,0),
故選:B.【題目點撥】本題考查了位似變換及坐標與圖形的知識,解題的關鍵是根據(jù)兩圖形的位似比畫出圖形,注意有兩種情況.11、C【解題分析】根據(jù)中心對稱圖形的概念,對各選項分析判斷即可得解.【題目詳解】解:A、是中心對稱圖形,故本選項不符合題意;
B、是中心對稱圖形,故本選項不符合題意;
C、不是中心對稱圖形,故本選項符合題意;
D、是中心對稱圖形,故本選項不符合題意.故選:C.【題目點撥】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.12、A【解題分析】∵關于x的一元二次方程x2+8x+q=0有兩個不相等的實數(shù)根,∴△>0,即82-4q>0,∴q<16,故選A.二、填空題(每題4分,共24分)13、【解題分析】設方程另一個根為x,根據(jù)根與系數(shù)的關系得,然后解一次方程即可.【題目詳解】設方程另一個根為x,根據(jù)題意得x+1=3,解得x=2.故答案為:x=2.【題目點撥】本題主要考查一元二次方程根與系數(shù)的關系,熟記公式是解決本題的關鍵.14、22.5【解題分析】根據(jù)題意畫出圖形,構造出△PCD∽△PAB,利用相似三角形的性質解題.解:過P作PF⊥AB,交CD于E,交AB于F,如圖所示設河寬為x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴,∴,依題意CD=20米,AB=50米,∴,解得:x=22.5(米).答:河的寬度為22.5米.15、(﹣4,6)【分析】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反可得答案.【題目詳解】點P(4,﹣6)關于原點對稱的點的坐標是(﹣4,6),故答案為:(﹣4,6).【題目點撥】本題考查了一點關于原點對稱的問題,橫縱坐標取相反數(shù)就是對稱點的坐標.16、【分析】根據(jù)勾股定理及三角函數(shù)的定義直接求解即可;【題目詳解】如圖,,∴sin∠A,故答案為:【題目點撥】本題考查了三角函數(shù)的定義及勾股定理,熟練掌握三角函數(shù)的定義是解題的關鍵.17、【分析】由于每個球被摸到的機會是均等的,故可用概率公式解答.【題目詳解】解:∵布袋里裝有4個紅球、5個黃球、6個黑球,∴P(摸到黃球)=;故答案為:.【題目點撥】此題考查了概率公式,要明確:如果在全部可能出現(xiàn)的基本事件范圍內(nèi)構成事件A的基本事件有a個,不構成事件A的事件有b個,則出現(xiàn)事件A的概率為:P(A)=.18、【分析】過點P1作P1E⊥x軸于點E,過點P2作P2F⊥x軸于點F,過點P3作P3G⊥x軸于點G,根據(jù)△P1OA1,△P2A1A2,△P3A2A3都是等腰直角三角形,可求出P1,P2,P3的坐標,從而總結出一般規(guī)律得出點Pn的坐標.【題目詳解】解:過點P1作P1E⊥x軸于點E,過點P2作P2F⊥x軸于點F,過點P3作P3G⊥x軸于點G,∵△P1OA1是等腰直角三角形,∴P1E=OE=A1E=OA1,設點P1的坐標為(a,a),(a>0),將點P1(a,a)代入,可得a=1,故點P1的坐標為(1,1),則OA1=2,設點P2的坐標為(b+2,b),將點P2(b+2,b)代入,可得b=,故點P2的坐標為(,),則A1F=A2F=,OA2=OA1+A1A2=,設點P3的坐標為(c+,c),將點P3(c+,c)代入,可得c=,故點P3的坐標為(,),綜上可得:P1的坐標為(1,1),P2的坐標為(,),P3的坐標為(,),總結規(guī)律可得:Pn坐標為;故答案為:.【題目點撥】本題考查了反比例函數(shù)的綜合,根據(jù)等腰三角形的性質結合反比例函數(shù)解析式求出P1,P2,P3的坐標,從而總結出一般規(guī)律是解題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)⊙O的直徑為26cm.【分析】(1)由AB為⊙O的直徑,CD是弦,且AB⊥CD于E,根據(jù)垂徑定理的即可求得CE=ED,,然后由圓周角定理與等腰三角形的性質,即可證得:∠ACO=∠BCD.(2)設⊙O的半徑為Rcm,得到OE=OB-EB=R-8,根據(jù)垂徑定理得到CE=CD=24=12,利用在RtCEO中,由勾股定理列出方程,故可求解.【題目詳解】證明:(1)∵AB為⊙O的直徑,CD是弦,且ABCD于E,∴CE=ED,,∴BCD=BAC∵OA=OC,∴OAC=OCA,∴ACO=BCD(2)設⊙O的半徑為Rcm,則OE=OB-EB=R-8,CE=CD=24=12在RtCEO中,由勾股定理可得OC=OE+CER=(R8)+12解得:R=13,∴2R=213=26答:⊙O的直徑為26cm.【題目點撥】此題考查了圓周角定理、垂徑定理、勾股定理以及相似三角形的判定與性質.此題難度適中,注意掌握數(shù)形結合思想的應用.20、(1)見解析;(2)【分析】(1)作線段的垂直平分線,兩線交于點,以為圓心,為半徑作,即為所求.(2)在中,利用勾股定理求出即可解決問題.【題目詳解】解:(1)如圖即為所求.(2)設線段的垂直平分線交于點.由題意,在中,,∴.故答案為.【題目點撥】本題考查作圖-復雜作圖,等腰三角形的性質,三角形的外接圓與外心等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1)矩形零件PQMN的面積為2304mm2;(2)這個矩形零件PQMN面積S的最大值是2400mm2.【分析】(1)設PQ=xmm,則AE=AD-ED=80-x,再證明△APN∽△ABC,利用相似比可表示出,根據(jù)正方形的性質得到(80-x)=x,求出x的值,然后結合正方形的面積公式進行解答即可.
(2)由(1)可得,求此二次函數(shù)的最大值即可.【題目詳解】解:(1)設PQ=xmm,
易得四邊形PQDE為矩形,則ED=PQ=x,
∴AE=AD-ED=80-x,
∵PN∥BC,
∴△APN∽△ABC,,即,,∵PN=PQ,,解得x=1.
故正方形零件PQMN面積S=1×1=2304(mm2).(2)當時,S有最大值==2400(mm2).所以這個矩形零件PQMN面積S的最大值是2400mm2.【題目點撥】本題考查綜合考查相似三角形性質的應用以及二次函數(shù)的最大值的求法.22、(1)A點坐標為(4,0),D點坐標為(-2,0),C點坐標為(0,-3);(2)或或;(3)在拋物線上存在一點P,使得以點A、B、C、P四點為頂點所構成的四邊形為梯形;點P的坐標為(-2,0)或(6,6).【分析】(1)令y=0,解方程可得到A點和D點坐標;令x=0,求出y=-3,可確定C點坐標;(2)根據(jù)兩個同底三角形面積相等得出它們的高相等,即縱坐標絕對值相等,得出點M的縱坐標為:,分別代入函數(shù)解析式求解即可;(3)分BC為梯形的底邊和BC為梯形的腰兩種情況討論即可.【題目詳解】(1)在中令,解得,∴A(4,0)、D(-2,0).在中令,得,∴C(0,-3);(2)過點C做軸的平行線,交拋物線與點,做點C關于軸的對稱點,過點做軸的平行線,交拋物線與點,如下圖所示:∵△MAD的面積與△CAD的面積相等,且它們是等底三角形∴點M的縱坐標絕對值跟點C的縱坐標絕對值相等∵點C的縱坐標絕對值為:∴點M的縱坐標絕對值為:∴點M的縱坐標為:當點M的縱坐標為時,則解得:或(即點C,舍去)∴點的坐標為:當點M的縱坐標為時,則解得:∴點的坐標為:,點的坐標為:∴點M的坐標為:或或;(3)存在,分兩種情況:①如圖,當BC為梯形的底邊時,點P與D重合時,四邊形ADCB是梯形,此時點P為(-2,0).②如圖,當BC為梯形的腰時,過點C作CP//AB,與拋物線交于點P,∵點C,B關于拋物線對稱,∴B(2,-3)設直線AB的解析式為,則,解得.∴直線AB的解析式為.∵CP//AB,∴可設直線CP的解析式為.∵點C在直線CP上,∴.∴直線CP的解析式為.聯(lián)立,解得,∴P(6,6).綜上所述,在拋物線上存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形,點P的坐標為(-2,0)或(6,6).考點:1.二次函數(shù)綜合題;2.待定系數(shù)法的應用;3.曲線上點的坐標與方程的關系;4.軸對稱的應用(最短線路問題);5.二次函數(shù)的性質;6.梯形存在性問題;7.分類思想的應用.23、,【分析】把點A(3,k-2)代入,即可得出=k?2,據(jù)此求出k的值,再根據(jù)正比例函數(shù)y的值隨x的值增大而減小,得出滿足條件的k值即可求解.【題目詳解】根據(jù)題意可得
=k?2,
整理得k2-2k+3=0,
解得k1=-1,k2=3,
∵正比例函數(shù)y的值隨x的值增大而減小,
∴k=-1,
∴點A的坐標為(3,-3),
∴反比例函數(shù)是解析式為:y=?;
正比例函數(shù)的解析式為:y=-x.【題目點撥】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵在于將函數(shù)圖象的交點與方程(組)的解結合起來是解此類題目常用的方法.24、(1)見解析;(2),【分析】(1)欲證直線是的切線,需連接OD,證∠EDO=90°,根據(jù)題意,利用平行線的性質即可證得;(2)先構造直角三角形,需要連接AD,利用三角形的面積法來求出DE的長,再在Rt△ADC中來求.【題目詳解】(1)證明:如圖,連接.為的中點,為的中點,又..是圓的切線(2)解:連.是直徑,.為的中點,在中在中由面積法可知即在中.【題目點撥】本題考查了切線的判定定理及直角三角形直角邊與斜邊的關系,證明圓的切線的問題常用的思路是根據(jù)利用切線的判定定理轉化成證垂直的問題;求線段長和三角函數(shù)值一般應構造相應的直角三角形.25、電動扶梯DA的長為70米.【分析】作DE⊥BC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年事業(yè)單位合同簽訂風險防范與應對措施
- 2025年廣州房地產(chǎn)交易合同居間操作流程
- 2025年數(shù)字視頻切換臺項目規(guī)劃申請報告模稿
- 2025年合作經(jīng)營居間投資協(xié)議書
- 2025年專業(yè)知識產(chǎn)權顧問合同范本
- 2025年債權轉讓合同協(xié)議示范
- 2025年信息技術咨詢顧問服務年合同
- 2025年農(nóng)村耕地流轉合同樣本
- 2025年住宿生權益協(xié)議
- 2025年傳統(tǒng)村落保護搬遷安置協(xié)議
- 2024年度碳陶剎車盤分析報告
- 2025年春新外研版(三起)英語三年級下冊課件 Unit6第1課時Startup
- 2025年1月 浙江首考英語試卷
- 十首最美的唐詩
- 2024年中考二輪專題復習道德與法治主觀題答題技巧(小論文)之演講稿
- 質檢工作計劃書2025質檢部工作計劃范文
- 施工現(xiàn)場5S管理規(guī)范
- 《纏論的實戰(zhàn)技法》課件
- 新版標準化機電專業(yè)管理體系解讀課件
- 承包魚塘維修施工合同范例
- 耶魯綜合抽動嚴重程度量表正式版
評論
0/150
提交評論