2024屆山東省泰安市數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆山東省泰安市數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆山東省泰安市數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆山東省泰安市數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆山東省泰安市數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆山東省泰安市數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知,,那么ab的值為()A. B. C. D.2.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出1個球,是黃球的概率為()A. B. C. D.3.如圖,五邊形內(nèi)接于,若,則的度數(shù)是()A. B. C. D.4.下列算式正確的是()A. B. C. D.5.如圖,直線l1∥l2∥l3,兩條直線AC和DF與l1,l2,l3分別相交于點A、B、C和點D、E、F,則下列比例式不正確的是()A. B. C. D.6.將半徑為5cm的圓形紙片沿著弦AB進行翻折,弦AB的中點與圓心O所在的直線與翻折后的劣弧相交于C點,若OC=3cm,則折痕AB的長是()A. B. C.4cm或6cm D.或7.如圖,是矩形內(nèi)的任意一點,連接、、、,得到,,,,設(shè)它們的面積分別是,,,,給出如下結(jié)論:①②③若,則④若,則點在矩形的對角線上.其中正確的結(jié)論的序號是()A.①② B.②③ C.③④ D.②④8.隨機擲一枚均勻的硬幣兩次,落地后至少有一次正面朝上的概率是()A. B. C. D.19.若是方程的兩根,則的值是()A. B. C. D.10.將拋物線y=2xA.y=2(x-2)2-3 B.y=2(x-2)211.二次函數(shù)y=a+bx+c的圖象如圖所示,則下列關(guān)系式錯誤的是()A.a(chǎn)<0 B.b>0 C.﹣4ac>0 D.a(chǎn)+b+c<012.如圖是由6個大小相同的小正方體疊成的幾何體,則它的主視圖是()A. B.C. D.二、填空題(每題4分,共24分)13.設(shè)m是一元二次方程x2﹣x﹣2019=0的一個根,則m2﹣m+1的值為___.14.如圖,一個寬為2cm的刻度尺在圓形光盤上移動,當(dāng)刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的直徑是_____________cm.15.如圖,點C是以AB為直徑的半圓上一個動點(不與點A、B重合),且AC+BC=8,若AB=m(m為整數(shù)),則整數(shù)m的值為______.16.如圖,在菱形中,,,點,,分別為線段,,上的任意一點,則的最小值為__________.17.如圖所示的網(wǎng)格是正方形網(wǎng)格,△和△的頂點都是網(wǎng)格線交點,那么∠∠_________°.18.鬧元宵吃湯圓是我國傳統(tǒng)習(xí)俗,正月十五小明的媽媽煮了一碗湯圓,其中有4個花生味和2個芝麻味,小明從中任意吃一個,恰好吃到花生味湯圓的概率是_____.三、解答題(共78分)19.(8分)甲、乙兩個人在紙上隨機寫一個-2到2之間的整數(shù)(包括-2和2).若將兩個人所寫的整數(shù)相加,那么和是1的概率是多少?20.(8分)如圖,已知AB為⊙O的直徑,PA與⊙O相切于A點,點C是⊙O上的一點,且PC=PA.(1)求證:PC是⊙O的切線;(2)若∠BAC=45°,AB=4,求PC的長.21.(8分)如圖,山頂有一塔AB,塔高33m.計劃在塔的正下方沿直線CD開通穿山隧道EF,從與E點相距80m的C處測得A、B的仰角分別為27°、22°,從與F點相距50m的D處測得A的仰角為45°.求隧道EF的長度.(參考數(shù)據(jù):tan22°≈0.40,tan27°≈0.51)22.(10分)如圖,在△ABC中,AB=AC,點D在BC上,BD=DC,過點D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點.(1)求證:AB是⊙O的直徑;(2)判斷DE與⊙O的位置關(guān)系,并加以證明;(3)若⊙O的半徑為3,∠BAC=60°,求DE的長.23.(10分)近年來,無人機航拍測量的應(yīng)用越來越廣泛.如圖,無人機從A處觀測得某建筑物頂點O時俯角為30°,繼續(xù)水平前行10米到達B處,測得俯角為45°,已知無人機的水平飛行高度為45米,則這棟樓的高度是多少米?(結(jié)果保留根號)24.(10分)如圖,是由兩個長方體組合而成的一個立體圖形的主視圖和左視圖,根據(jù)圖中所標(biāo)尺寸(單位:).(1)直接寫出上下兩個長方休的長、寬、商分別是多少:(2)求這個立體圖形的體積.25.(12分)直線與雙曲線只有一個交點,且與軸、軸分別交于、兩點,AD垂直平分,交軸于點.(1)求直線、雙曲線的解析式;(2)過點作軸的垂線交雙曲線于點,求的面積.26.小寇隨機調(diào)查了若干租用共享單車市民的騎車時間t(單位:分),將獲得的據(jù)分成四組(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),繪制了如下統(tǒng)計圖,根據(jù)圖中信息,解答下列問題:(1)小寇調(diào)查的總?cè)藬?shù)是人;(2)表示C組的扇形統(tǒng)計圖的圓心角的度數(shù)是°;(3)如果小寇想從D組的甲、乙、丙、丁四人中隨機選擇兩人進一步了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出丁被選中的概率.

參考答案一、選擇題(每題4分,共48分)1、C【分析】利用平方差公式進行計算,即可得到答案.【題目詳解】解:∵,,∴;故選擇:C.【題目點撥】本題考查了二次根式的乘法運算,解題的關(guān)鍵是熟練運用平方差公式進行計算.2、A【分析】讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【題目詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出1個球是黃球的概率是.

故選A.【題目點撥】本題考查概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.3、B【分析】利用圓內(nèi)接四邊形對角互補得到∠B+∠ADC=180°,∠E+∠ACD=180°,然后利用三角形內(nèi)角和求出∠ADC+∠ACD=180°-∠CAD,從而使問題得解.【題目詳解】解:由題意:∠B+∠ADC=180°,∠E+∠ACD=180°∴∠B+∠ADC+∠E+∠ACD=360°又∵∴∠ADC+∠ACD=180°-∠CAD=180°-35°=145°∴∠B+∠E+145°=360°∴∠B+∠E=故選:B【題目點撥】本題考查圓內(nèi)接四邊形對角互補和三角形內(nèi)角和定理,掌握性質(zhì)正確推理計算是本題的解題關(guān)鍵.4、B【解題分析】根據(jù)有理數(shù)的減法、絕對值的意義、相反數(shù)的意義解答即可.【題目詳解】A.,故不正確;B.,正確;C.,故不正確;D.,故不正確;故選B.【題目點撥】本題考查了有理數(shù)的運算,熟練掌握有理數(shù)的減法法則、絕對值的意義、相反數(shù)的意義是解答本題的關(guān)鍵.5、D【解題分析】試題分析:根據(jù)平行線分線段成比例定理,即可進行判斷.解:∵l1∥l2∥l3,∴,,,.∴選項A、B、C正確,D錯誤.故選D.點睛:本題是一道關(guān)于平行線分線段成比例的題目,掌握平行線分線段成比例的相關(guān)知識是解答本題的關(guān)鍵6、D【分析】分兩種情況討論:AB與C點在圓心同側(cè),AB與C點在圓心兩側(cè),根據(jù)翻折的性質(zhì)及垂徑定理和勾股定理計算即可.【題目詳解】如圖:E是弦AB的中點是直角三角形,沿著弦AB進行翻折得到在中如圖:E是弦AB的中點是直角三角形沿著弦AB進行翻折得到在中故選:D【題目點撥】本題考查的是垂徑定理,掌握翻折的性質(zhì)及垂徑定理并能正確的進行分類討論畫出圖形是關(guān)鍵.7、D【分析】根據(jù)三角形面積公式、矩形性質(zhì)及相似多邊形的性質(zhì)得出:①矩形對角線平分矩形,S△ABD=S△BCD,只有P點在BD上時,S?+S?=S?+S4;②根據(jù)底邊相等的兩個三角形的面積公式求和可知,S?+S?=矩形ABCD面積,同理S?+S4=矩形ABCD面積,所以S?+S?=S?+S4;③根據(jù)底邊相等高不相等的三角形面積比等于高的比來說明即可;④根據(jù)相似四邊形判定和性質(zhì),對應(yīng)角相等、對應(yīng)邊成比例的四邊形相似,矩形AEPF∽矩形ABCD推出,點P在對角線上.【題目詳解】解:①當(dāng)點P在矩形的對角線BD上時,S?+S?=S?+S4.但P是矩形ABCD內(nèi)的任意一點,所以該等式不一定成立。故①不一定正確;②∵矩形∴AB=CD,AD=BC∵△APD以AD為底邊,△PBC以BC為底邊,這兩三角形的底相等,高的和為AB,∴S?+S?=S矩形ABCD;同理可得S?+S4=S矩形ABCD,∴②S?+S4=S?+S?正確;③若S?=2S?,只能得出△APD與△PBC高度之比是,S?、S4分別是以AB、CD為底的三角形的面積,底相等,高的比不一定等于,S4=2S2不一定正確;故此選項錯誤;④過點P分別作PF⊥AD于點F,PE⊥AB于點E,F.若S1=S2,.則AD·PF=AB·PE∴△APD與△PAB的高的比為:∵∠DAE=∠PEA=∠PFA=90°∴四邊形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P點在矩形的對角線上,選項④正確.故選:D【題目點撥】本題考查了三角形面積公式的應(yīng)用,相似多邊形的判定和性質(zhì),用相似多邊形性質(zhì)對應(yīng)邊成比例是解決本題的難點.8、C【解題分析】先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【題目詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是.故選C.【題目點撥】如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.9、D【解題分析】試題分析:x1+x2=-=6,故選D考點:根與系數(shù)的關(guān)系10、B【解題分析】根據(jù)“左加右減,上加下減”的規(guī)律求解即可.【題目詳解】y=2x2向右平移2個單位得y=2(x﹣2)2,再向上平移3個單位得y=2(x﹣2)2+3.故選B.【題目點撥】本題考查了二次函數(shù)圖象的平移,其規(guī)律是是:將二次函數(shù)解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)2+k

(a,b,c為常數(shù),a≠0),確定其頂點坐標(biāo)(h,k),在原有函數(shù)的基礎(chǔ)上“h值正右移,負(fù)左移;k值正上移,負(fù)下移”.11、D【解題分析】試題分析:根據(jù)拋物線的開口方向?qū)進行判斷;根據(jù)拋物線的對稱軸位置對B進行判斷;根據(jù)拋物線與x軸的交點個數(shù)對C進行判斷;根據(jù)自變量為1所對應(yīng)的函數(shù)值為正數(shù)對D進行判斷.A、拋物線開口向下,則a<0,所以A選項的關(guān)系式正確;B、拋物線的對稱軸在y軸的右側(cè),a、b異號,則b>0,所以B選項的關(guān)系式正確;C、拋物線與x軸有2個交點,則△=b2﹣4ac>0,所以D選項的關(guān)系式正確;D、當(dāng)x=1時,y>0,則a+b+c>0,所以D選項的關(guān)系式錯誤.考點:二次函數(shù)圖象與系數(shù)的關(guān)系12、C【分析】找到從正面看所得到的圖形即可.【題目詳解】解:它的主視圖是:故選:C.【題目點撥】本題考查了三視圖的知識,掌握主視圖是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、2020.【分析】把x=m代入方程計算即可求解.【題目詳解】解:把x=m代入方程得:m2﹣m﹣2019=0,即m2﹣m=2019,則原式=2019+1=2020,故答案為2020.【題目點撥】本題考查一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.14、10【分析】本題先根據(jù)垂徑定理構(gòu)造出直角三角形,然后在直角三角形中已知弦長和弓形高,根據(jù)勾股定理求出半徑,從而得解.【題目詳解】如圖,設(shè)圓心為O,弦為AB,切點為C.如圖所示.則AB=8cm,CD=2cm.連接OC,交AB于D點.連接OA.∵尺的對邊平行,光盤與外邊緣相切,∴OC⊥AB.∴AD=4cm.設(shè)半徑為Rcm,則R2=42+(R?2)2,解得R=5,∴該光盤的直徑是10cm.故答案為:10.【題目點撥】此題考查了切線的性質(zhì)及垂徑定理,建立數(shù)學(xué)模型是關(guān)鍵.15、6或1【分析】因為直徑所對圓周角為直角,所以ABC的邊長可應(yīng)用勾股定理求解,其中,且AC+BC=8,即可求得,列出關(guān)于BC的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)和三角形的三邊關(guān)系得出的范圍,再根據(jù)題意要求AB為整數(shù),即可得出AB可能的長度.【題目詳解】解:∵直徑所對圓周角為直角,故ABC為直角三角形,∴根據(jù)勾股定理可得,,即,又∵AC+BC=8,∴AC=8-BC∴∵∴當(dāng)BC=4時,的最小值=32,∴AB的最小值為∵∴∵AB=m∴∵m為整數(shù)∴m=6或1,故答案為:6或1.【題目點撥】本題主要考察了直徑所對圓周角為直角、勾股定理、三角形三邊關(guān)系、二次函數(shù)的性質(zhì),解題的關(guān)鍵在于找出AB長度的范圍.16、【分析】根據(jù)菱形的對稱性,在AB上找到點P關(guān)于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E,根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時最小,且最小值為的長,,然后利用銳角三角函數(shù)求AE即可.【題目詳解】解:根據(jù)菱形的對稱性,在AB上找到點P關(guān)于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E根據(jù)對稱性可知:PK=K,∴此時=,根據(jù)垂線段最短和平行線之間的距離處處相等,∴此時最小,且最小值為的長,∵在菱形中,,∴,∠ADE=180°-∠A=60°在Rt△ADE中,AE=AD·sin∠ADE=∴即的最小值為故答案為.【題目點撥】此題考查的是菱形的性質(zhì)、求兩線段之和的最值問題和銳角三角函數(shù),掌握菱形的性質(zhì)、垂線段最短、平行線之間的距離處處相等和用銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.17、45【分析】先利用平行線的性質(zhì)得出,然后通過勾股定理的逆定理得出為等腰直角三角形,從而可得出答案.【題目詳解】如圖,連接AD,∵∴∴∵∴∴∴故答案為45【題目點撥】本題主要考查平行線的性質(zhì)及勾股定理的逆定理,掌握勾股定理的逆定理及平行線的性質(zhì)是解題的關(guān)鍵.18、【分析】用花生味湯圓的個數(shù)除以湯圓總數(shù)計算即可.【題目詳解】解:∵一碗湯圓,其中有4個花生味和2個芝麻味,∴從中任意吃一個,恰好吃到花生味湯圓的概率是:.故答案為.【題目點撥】本題考查了概率公式的應(yīng)用,如果一個事件共有n種可能,而且每一個事件發(fā)生的可能性相同,其中事件A出現(xiàn)m種可能,那么事件A的概率.三、解答題(共78分)19、【分析】先畫樹狀圖展示所有25種等可能的結(jié)果數(shù),再找出兩數(shù)和是1的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】解:畫樹狀為:共25種可能,其中和為1有4種.∴和為1的概率為.【題目點撥】本題考查了列表法或樹狀圖法求概率:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.20、(1)見解析;(2)2【分析】(1)根據(jù)切線的性質(zhì)得到∠PAB=90°,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠OCA,求得PC⊥CO,根據(jù)切線的判定定理即可得到結(jié)論;(2)連接BC,先根據(jù)△ACB是等腰直角三角形,得到AC和,從而推出△PAC是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)即可得到PC的值.【題目詳解】(1)連接CO,∵PA是⊙O的切線,∴∠PAB=90°,∵OA=OC,∴∠OAC=∠OCA,∵PC=PA,∴∠PAC=∠PCA,∴∠PCO=∠PCA+∠ACO=∠PAC+∠OAC=∠PAB=90°,∴PC⊥CO,∵OC是半徑∴PC是⊙O的切線;(2)連接BC,為⊙O直徑,,,,,【題目點撥】本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.同時考查了勾股定理和等腰直角三角形的性質(zhì).21、隧道的長度約為.【分析】延長AB交CD于H,利用正切的定義用CH表示出AH、BH,根據(jù)題意列式求出CH,計算即可.【題目詳解】解:如圖,延長交于點,則.在中,,∵.∴.在中,,∵,∴.∵,∴.∴.∴.在中,,∵,∴.∴.因此,隧道的長度約為.【題目點撥】本題考查的是解直角三角形的應(yīng)用?仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.22、(1)證明見解析;(2)DE與⊙O相切;(3)【分析】(1)連接AD,根據(jù)等腰三角形三線合一性質(zhì)得到AD⊥BC,再根據(jù)90°的圓周角所對的弦為直徑即可證得AB是⊙O的直徑;(2)DE與圓O相切,理由為:連接OD,利用中位線定理得到OD∥AC,利用兩直線平行內(nèi)錯角相等得到∠ODE為直角,再由OD為半徑,即可得證;(3)由AB=AC,且∠BAC=60°,得到DABC為等邊三角形,連接BF,DE為DCBF中位線,求出BF的長,即可確定出DE的長.【題目詳解】解:(1)證明:連接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB為⊙O的直徑;(2)DE與⊙O相切,理由為:連接OD,∵O、D分別為AB、BC的中點,∴OD為△ABC的中位線,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD為⊙O的半徑,∴DE與⊙O相切;(3)解:連接BF,∵AB=AC,∠BAC=60°,∴△ABC為等邊三角形,∴AB=AC=BC=6,∵AB為⊙O的直徑,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D為BC中點,∴E為CF中點,DE=BF,在Rt△ABF中,∠AFB=90°,AB=6,AF=3,∴BF=,則DE=BF=.【題目點撥】本題考查圓;等腰三角形;平行線的性質(zhì).23、40﹣5【分析】過O點作OC⊥AB的延長線于C點,垂足為C,設(shè)OC=BC=x,則AC=10+x,利用正切值的定義列出x的方程,求出x的值,進而求出樓的高度.【題目詳解】過O點作OC⊥AB的延長線于C點,垂足為C,根據(jù)題意可知,∠OAC=30°,∠OBC=45°,AB=10米,AD=45米,在Rt△BCO中,∠OBC=45°,∴BC=OC,設(shè)OC=BC=x,則AC=10+x,在Rt△ACO中,,解得:x=5+5,則這棟樓的高度(米).【題目點撥】本題考查解直角三角形的應(yīng)用-仰角、俯角的問題以及解直角三角形方法,解題的關(guān)鍵是從實際問題中構(gòu)造出直角三角形.24、(1)立體圖形下面的長方體的長、寬、高分別為;上面的長方體的長、寬、高分別為;(2)這個立體圖形的體積為.【分析】(1)根據(jù)主視圖可分別得出兩個長方體的長和高,根據(jù)左視圖可分別得出兩個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論