版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市長安一中2024屆高一數(shù)學第一學期期末學業(yè)質量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在中,為邊上的中線,,設,若,則的值為A. B.C. D.2.將函數(shù)圖象上所有點的橫坐標縮短為原來的倍(縱坐標不變),再向右平移個單位,得到函數(shù)的圖象,則函數(shù)的圖象的一條對稱軸為A. B.C. D.3.設是兩條不同的直線,是兩個不同的平面,且,則下列說法正確的是A.若,則 B.若,則C.若,則 D.若,則4.設,,,則A. B.C. D.5.已知集合,那么A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)6.函數(shù)的最小正周期為A. B.C.2 D.47.已知全集,集合,集合,則集合A. B.C. D.8.拋擲兩枚均勻的骰子,記錄正面朝上的點數(shù),則下列選項的兩個事件中,互斥但不對立的是()A.事件“點數(shù)之和為奇數(shù)”與事件“點數(shù)之和為9”B.事件“點數(shù)之和為偶數(shù)”與事件“點數(shù)之和為奇數(shù)”C.事件“點數(shù)之和為6”與事件“點數(shù)之和為9”D.事件“點數(shù)之和不小于9”與事件“點數(shù)之和小于等于8”9.已知集合A={1,2,3},集合B={x|x2=x},則A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}10.已知函數(shù)(,),若的圖像的任何一條對稱軸與x軸交點的橫坐標均不屬于區(qū)間,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,寫出一個滿足條件的的值:______12.若直線:與直線:互相垂直,則實數(shù)的值為__________13.向量與,則向量在方向上的投影為______14.函數(shù)的最大值為__________15.函數(shù)的定義域是_____________16.若且,則取值范圍是___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.證明:(1);(2)18.已知函數(shù),.(1)求方程的解集;(2)定義:.已知定義在上的函數(shù),求函數(shù)的解析式;(3)在(2)的條件下,在平面直角坐標系中,畫出函數(shù)的簡圖,并根據(jù)圖象寫出函數(shù)的單調區(qū)間和最小值.19.已知向量為不共線向量,若向量與共線求k的值20.已知函數(shù).(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并說明理由;(3)若函數(shù),求函數(shù)零點.21.已知函數(shù)f(x)=x-(1)討論并證明函數(shù)f(x)在區(qū)間(0,+∞)的單調性;(2)若對任意的x∈[1,+∞),f(mx)+mf(x)<0恒成立,求實數(shù)m的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】分析:求出,,利用向量平行的性質可得結果.詳解:因為所以,因為,則,有,,由可知,解得.故選點睛:本題主要考查平面向量的運算,屬于中檔題.向量的運算有兩種方法,一是幾何運算往往結合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標運算:建立坐標系轉化為解析幾何問題解答(求最值與范圍問題,往往利用坐標運算比較簡單)2、C【解題分析】,所以,所以,所以是一條對稱軸故選C3、A【解題分析】本道題目分別結合平面與平面平行判定與性質,平面與平面平行垂直判定與性質,即可得出答案.【題目詳解】A選項,結合一條直線與一平面垂直,則過該直線的平面垂直于這個平面,故正確;B選項,平面垂直,則位于兩平面的直線不一定垂直,故B錯誤;C選項,可能平行于與相交線,故錯誤;D選項,m與n可能異面,故錯誤【題目點撥】本道題目考查了平面與平面平行判定與性質,平面與平面平行垂直判定與性質,發(fā)揮空間想象能力,找出選項的漏洞,即可.4、C【解題分析】利用有理指數(shù)冪與對數(shù)的運算性質分別比較,,與1和2的大小得答案【題目詳解】∵,且,,,∴故選C【題目點撥】本題考查對數(shù)值的大小比較,考查有理指數(shù)冪與對數(shù)的運算性質,尋找中間量是解題的關鍵,屬于基礎題5、A【解題分析】利用數(shù)軸,取所有元素,得【名師點睛】對于集合的交、并、補運算問題,應先把集合化簡再計算,常常借助數(shù)軸或韋恩圖處理6、C【解題分析】分析:根據(jù)正切函數(shù)的周期求解即可詳解:由題意得函數(shù)的最小正周期為故選C點睛:本題考查函數(shù)的最小正周期,解答此類問題時根據(jù)公式求解即可7、A【解題分析】,所以,故選A.考點:集合運算.8、C【解題分析】利用對立事件、互斥事件的定義直接求解【題目詳解】對于,二者能同時發(fā)生,不是互斥事件,故錯誤;對于,二者不能同時發(fā)生,也不能同時不發(fā)生,是對立事件,故錯誤;對于,二者不能同時發(fā)生,但能同時不發(fā)生,是互斥但不對立事件,故正確;對于,二者不能同時發(fā)生,也不能同時不發(fā)生,是對立事件,故錯誤故選:9、C【解題分析】求出集合B={0,1},然后根據(jù)并集的定義求出A∪B【題目詳解】解:∵集合A={1,2,3},集合B={x|x2=x}={0,1},∴A∪B={0,1,2,3}故選C【題目點撥】本題考查并集的求法,是基礎題,解題時要認真審題10、C【解題分析】由已知得,,且,解之討論k,可得選項.【題目詳解】因為的圖像的任何一條對稱軸與x軸交點的橫坐標均不屬于區(qū)間,所以,所以,故排除A,B;又,且,解得,當時,不滿足,當時,符合題意,當時,符合題意,當時,不滿足,故C正確,D不正確,故選:C.【題目點撥】關鍵點睛:本題考查根據(jù)正弦型函數(shù)的對稱性求得參數(shù)的范圍,解決問題的關鍵在于運用整體代換的思想,建立關于的不等式組,解之討論可得選項.二、填空題:本大題共6小題,每小題5分,共30分。11、(答案不唯一)【解題分析】利用,可得,,計算即可得出結果.【題目詳解】因為,所以,則,或,故答案為:(答案不唯一)12、-2【解題分析】由于兩條直線垂直,故.13、【解題分析】在方向上的投影為考點:向量的投影14、【解題分析】利用二倍角余弦公式,把問題轉化為關于的二次函數(shù)的最值問題.【題目詳解】,又,∴函數(shù)的最大值為.故答案為:.15、.【解題分析】由題意,要使函數(shù)有意義,則,解得:且.即函數(shù)定義域為.考點:函數(shù)的定義域.16、或【解題分析】分類討論解對數(shù)不等式即可.【題目詳解】因為,所以,當時,可得,當時,可得.所以或故答案為:或三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解題分析】(1)利用三角函數(shù)的和差公式,分別將兩邊化簡后即可;(2)利用和2倍角公式構造出齊次式,再同時除以即可證明.【小問1詳解】左邊===右邊===左邊=右邊,所以原等式得證.【小問2詳解】故原式得證.18、(1)(2)(3)圖象見解析,單調遞減區(qū)間是,單調遞增區(qū)間是,最小值為1【解題分析】(1)根據(jù)題意可得,平方即可求解.(2)由題意比較與大小,從而可得出答案.(3)由(2)得到的函數(shù)關系,作出函數(shù)圖像,根據(jù)圖像可得函數(shù)的單調區(qū)間和最小值.【小問1詳解】由,得且,解得,;所以方程的解集為【小問2詳解】由已知得.【小問3詳解】函數(shù)的圖象如圖實線所示:函數(shù)的單調遞減區(qū)間是,單調遞增區(qū)間是,其最小值為1.19、或【解題分析】由與共線存在實數(shù)使,再根據(jù)平面向量的基本定理構造一個關于的方程,解方程即可得到k的值.【題目詳解】,或【題目點撥】本題主要考查的是平面向量的基本定理,與共線存在實數(shù)使是判定兩個向量共線最常用的方法,是基礎題.20、(1)(2)為奇函數(shù)(3)【解題分析】(1)要使函數(shù)有意義,必須滿足,從而得到定義域;(2)利用奇偶性定義判斷奇偶性;(3)函數(shù)的零點即方程的根.即的根,又為奇函數(shù),所以.易證:在定義域上為增函數(shù),∴由得,從而解得函數(shù)的零點.試題解析:(1)要使函數(shù)有意義,必須滿足,∴,因此,的定義域為.(2)函數(shù)為奇函數(shù).∵的定義域為,對內的任意有:,所以,為奇函數(shù).(3)函數(shù)的零點即方程的根.即的根,又為奇函數(shù),所以.任取,且,∵,∴,∴∵且,∴,∴,∴,∴,即,∴在定義域上為增函數(shù),∴由得解得或,驗證當時,不符合題意,當時,符合題意,所以函數(shù)的零點為.點睛:證明函數(shù)單調性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差:,并將此式變形(要注意變形到能判斷整個式子符號為止);(3)定號:判斷的正負(要注意說理的充分性),必要時要討論;(4)下結論:根據(jù)定義得出其單調性.21、(1)函數(shù)f(x)在(0,+∞)上單調遞增,見解析(2)m<-1【解題分析】1利用單調性的定義,根據(jù)步驟,取值,作差,變形,定號下
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度汽車零部件采購合同范本(含質量保證)4篇
- 2025年新型環(huán)保材料采購與物業(yè)保潔服務合同3篇
- 2025年度個人貸款合同范本集錦與金融科技創(chuàng)新應用4篇
- 2025年度新型環(huán)保材料研發(fā)與應用項目合作合同4篇
- 2025年度個人企業(yè)全額承包經(jīng)營合作協(xié)議書范本7篇
- 二零二五年度工業(yè)模具長期租賃合作協(xié)議4篇
- 二零二五年度新型農(nóng)村合作醫(yī)療資金管理合同4篇
- 2025年度個人網(wǎng)絡課程訂購服務合同3篇
- 弱電設計合同(2篇)
- 工程后期保潔協(xié)議書(2篇)
- 春節(jié)英語介紹SpringFestival(課件)新思維小學英語5A
- 進度控制流程圖
- 2023年江蘇省南京市中考化學真題
- 【閱讀提升】部編版語文五年級下冊第四單元閱讀要素解析 類文閱讀課外閱讀過關(含答案)
- 供電副所長述職報告
- 現(xiàn)在完成時練習(短暫性動詞與延續(xù)性動詞的轉換)
- 產(chǎn)品質量監(jiān)控方案
- 物業(yè)總經(jīng)理述職報告
- 新起點,新發(fā)展心得體會
- 深圳大學學校簡介課件
- 校園欺凌問題成因及對策分析研究論文
評論
0/150
提交評論