版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖南省衡陽縣江山學校數(shù)學高一上期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.16 B.15C.18 D.172.設函數(shù)則A.1 B.4C.5 D.93.若,則()A. B.C. D.4.設和兩個集合,定義集合,且,如果,,那么A. B.C. D.5.已知,,,則A. B.C. D.6.函數(shù)的圖象如圖所示,則()A. B.C. D.7.已知函數(shù)的圖象上的每一點的縱坐標擴大到原來的倍,橫坐標擴大到原來的倍,然后把所得的圖象沿軸向右平移個單位,這樣得到的曲線和的圖象相同,則已知函數(shù)的解析式為A B.C. D.8.已知圓:與圓:,則兩圓的位置關系是A.相交 B.相離C.內切 D.外切9.關于函數(shù)的敘述中,正確的有()①的最小正周期為;②在區(qū)間內單調遞增;③是偶函數(shù);④的圖象關于點對稱.A.①③ B.①④C.②③ D.②④10.設f(x)為定義在R上的奇函數(shù),當x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)=()A.3 B.1C.-1 D.-3二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),為偶函數(shù),則______12.若函數(shù)在區(qū)間上是增函數(shù),則實數(shù)取值范圍是______13.已知,則函數(shù)的最大值是__________14.已知直線與兩坐標軸所圍成的三角形的面積為1,則實數(shù)值是____________15.已知函數(shù),現(xiàn)有如下幾個命題:①該函數(shù)為偶函數(shù);
②是該函數(shù)的一個單調遞增區(qū)間;③該函數(shù)的最小正周期為;④該函數(shù)的圖像關于點對稱;⑤該函數(shù)的值域為.其中正確命題的編號為______16.函數(shù)的反函數(shù)為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,,.(1)求的值;(2)求的值:(3)求的值.18.為貫徹黨中央、國務院關于“十三五”節(jié)能減排的決策部署,2022年某企業(yè)計劃引進新能源汽車生產設備.通過市場分析,全年需投人固定成本2500萬元,生產百輛需另投人成本萬元.由于起步階段生產能力有限,不超過120,且經(jīng)市場調研,該企業(yè)決定每輛車售價為8萬元,且全年內生產的汽車當年能全部銷售完.(1)求2022年的利潤(萬元)關于年產量(百輛)的函數(shù)關系式(利潤銷售額-成本);(2)2022年產量多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.19.某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為24m2,三月底測得覆蓋面積為36m2,鳳眼蓮覆蓋面積y(單位:m2)與月份x(單位:月)的關系有兩個函數(shù)模型與可供選擇(1)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;(2)求鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份(參考數(shù)據(jù):lg2≈03010,lg3≈0.4771)20.某中學有初中學生1800人,高中學生1200人,為了解全校學生本學期開學以來(60天)的課外閱讀時間,學校采用分層抽樣方法,從中抽取100名學生進行問卷調查.將樣本中的“初中學生”和“高中學生”按學生的課外閱讀時間(單位:時)各分為5組[0,10)、[10,20)、[20,30)、[30,40)、[40,50],得到頻率分布直方圖如圖所示.(1)估計全校學生中課外閱讀時間在[30,40)小時內的總人數(shù)是多少;(2)從課外閱讀時間不足10小時的樣本學生中隨機抽取3人,求至少有2個初中生的概率;(3)國家規(guī)定,初中學生平均每人每天課外閱讀時間不少于半個小時.若該校初中學生課外閱讀時間小于國家標準,則學校應適當增加課外閱讀時間,根據(jù)以上抽樣調查數(shù)據(jù),該校是否需要增加初中學生的課外閱讀時間?并說明理由.21.設全集為,集合,(1)分別求,;(2)已知,若,求實數(shù)的取值范圍構成的集合
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】由三視圖還原的幾何體如圖所示,結合長方體的體積公式計算即可.【題目詳解】由圖可知,該幾何體是在一個長方體的右上角挖去一個小長方體,如圖,故該幾何體的體積為故選:B2、C【解題分析】根據(jù)題意,由函數(shù)的解析式求出與的值,相加即可得答案【題目詳解】根據(jù)題意,函數(shù),則,又由,則,則;故選C【題目點撥】本題考查對數(shù)的運算,及函數(shù)求值問題,其中解答中熟記對數(shù)的運算,以及合理利用分段函數(shù)的解析式求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題3、A【解題分析】應用輔助角公式將條件化為,再應用誘導公式求.【題目詳解】由題設,,則,又.故選:A4、D【解題分析】根據(jù)的定義,可求出,,然后即可求出【題目詳解】解:,;∴.故選D.【題目點撥】考查描述法的定義,指數(shù)函數(shù)的單調性,正弦函數(shù)的值域,屬于基礎題5、D【解題分析】容易看出,,從而可得出a,b,c的大小關系.【題目詳解】,,;.故選D.【題目點撥】考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,以及增函數(shù)和減函數(shù)的定義,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質得到大小關系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關系.6、C【解題分析】根據(jù)正弦型函數(shù)圖象與性質,即可求解.【題目詳解】由圖可知:,所以,故,又,可求得,,由可得故選:C.7、B【解題分析】分析:將.的圖象軸向左平移個單位,然后把所得的圖象上的每一點的縱坐標變?yōu)樵瓉淼乃姆种槐?,橫坐標變?yōu)樵瓉淼亩种槐?,即可得到函?shù)的圖象,從而可得結果.詳解:利用逆過程:將.的圖象軸向左平移個單位,得到的圖象;將的圖象上的每一點的縱坐標變?yōu)樵瓉淼乃姆种槐兜玫降膱D象;將的圖象上的每一點的橫坐標變?yōu)樵瓉淼乃姆种槐兜玫降膱D象,所以函數(shù)的解析式為,故選B.點睛:本題主要考查了三角函數(shù)圖象變換,重點考查學生對三角函數(shù)圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學生對所學知識理解的深度.8、C【解題分析】分析:求出圓心的距離,與半徑的和差的絕對值比較得出結論詳解:圓,圓,,所以內切.故選C點睛:兩圓的位置關系判斷如下:設圓心距為,半徑分別為,則:,內含;,內切;,相交;,外切;,外離9、C【解題分析】應用差角余弦公式、二倍角正余弦公式及輔助角公式可得,再根據(jù)正弦型函數(shù)的性質,結合各項描述判斷正誤即可.【題目詳解】,∴最小正周期,①錯誤;令,則在上遞增,顯然當時,②正確;,易知為偶函數(shù),③正確;令,則,,易知的圖象關于對稱,④錯誤;故選:C10、D【解題分析】∵f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x+2x+b(b為常數(shù)),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=3∴f(-1)=-f(1)=-3故選D二、填空題:本大題共6小題,每小題5分,共30分。11、4【解題分析】利用二次函數(shù)為偶函數(shù)的性質得一次項系數(shù)為0,定義域關于原點對稱,即可求得的值.【題目詳解】由題意得:解得:故答案為:.【題目點撥】本題考查二次函數(shù)的性質,考查邏輯推理能力和運算求解能力,求解時注意隱含條件的挖掘.12、【解題分析】令,由題設易知在上為增函數(shù),根據(jù)二次函數(shù)的性質列不等式組求的取值范圍.【題目詳解】由題設,令,而為增函數(shù),∴要使在上是增函數(shù),即在上為增函數(shù),∴或,可得或,∴的取值范圍是.故答案為:13、【解題分析】由函數(shù)變形為,再由基本不等式求得,從而有,即可得到答案.【題目詳解】∵函數(shù)∴由基本不等式得,當且僅當,即時取等號.∴函數(shù)的最大值是故答案為.【題目點撥】本題主要考查線性規(guī)劃的應用以及基本不等式的應用,.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內,二是多次用或時等號能否同時成立).14、1或-1【解題分析】令x=0,得y=k;令y=0,得x=?2k.∴三角形面積S=|xy|=k2.又S=1,即k2=1,值是1或-1.15、②③【解題分析】由于為非奇非偶函數(shù),①錯誤.,此時,其在上為增函數(shù),②正確.由于,所以函數(shù)最小正周期為,③正確.由于,故④正確.當時,,故⑤錯誤.綜上所述,正確的編號為②③.16、【解題分析】由題設可得,即可得反函數(shù).【題目詳解】由,可得,∴反函數(shù)為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解題分析】(1)同角三角函數(shù)平方關系求得,,再由及差角余弦公式求值即可.(2)由誘導公式、二倍角余弦公式可得,即可求值.(3)由(1)及和角正余弦公式求、,由(2)及平方關系求,最后應用差角余弦公式求,結合角的范圍求.【小問1詳解】由題設,,,∴,,又.【小問2詳解】.【小問3詳解】由,則,由,則,∴,,又,,則,∴,而,故.18、(1)(2)2022年產量為100百輛時,企業(yè)所獲利潤最大,最大利潤為1600萬元【解題分析】(1)直接由題意分類寫出2022年的利潤(萬元)關于年產量(百輛)的函數(shù)關系式;(2)分別利用配方法與基本不等式求出兩段函數(shù)的最大值,求最大值中的最大者得結論【小問1詳解】由題意得:當年產量為百輛時,全年銷售額為萬元,則,所以當時,當時,,所以【小問2詳解】由(1)知:當時,,所以當時,取得最大值,最大值為1500萬元;當時,,當且僅當,即時等號成立,因為,所以2022年產量為100百輛時,企業(yè)所獲利潤最大,最大利潤為1600萬元.19、(1)選擇較為合適;(2)6月【解題分析】(1)根據(jù)指數(shù)函數(shù)和冪函數(shù)的性質可得合適的函數(shù)的模型.(2)根據(jù)選擇的函數(shù)模型可求最小月份.小問1詳解】指數(shù)函數(shù)隨著自變量的增大其函數(shù)的增長速度越大,冪函數(shù)隨著自變量的增大其函數(shù)的增長速度越小,因為鳳眼蓮在湖中的蔓延速度越來越快,故選擇較為合適.故,故,.所以.【小問2詳解】由(1),放入面積為,令,則,故鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份為6月.20、(1)720人(2)(3)需要增加,理由見解析【解題分析】(1)由分層抽樣的特點可分別求得抽取的初中生、高中生人數(shù),由頻率分布直方圖的性質可知初中生、高中生課外閱讀時間在,小時內的頻率,然后由頻數(shù)樣本容量頻率可分別得初中生、高中生課外閱讀時間在,小時內的樣本學生數(shù),最后將兩者相加即可(2)記“從閱讀時間不足10個小時的樣本學生中隨機抽取3人,至少有2個初中生”為事件,由頻數(shù)樣本容量頻率組距頻率可分別得初中生、高中生中,閱讀時間不足10個小時的學生人數(shù),然后用列舉法表示出隨機抽取3人的所有可能結果以及事件的結果,從而得(3)同一組中的數(shù)據(jù)用該組區(qū)間中點值作為代表來計算樣本中的所有初中生平均每天閱讀時間,并與30小時比較大小,若小于30小時,則需要增加,否則不需要增加【小問1詳解】由分層抽樣知,抽取的初中生有人,高中生有人初中生中,課外閱讀時間在,小時內的頻率為:,學生人數(shù)為人高中生中,課外閱讀時間在,小時內的頻率為:,學生人數(shù)約有人,全校學生中課外閱讀時間在,小時內學生總人數(shù)為人【小問2詳解】記“從閱讀時間不足10個小時的樣本學生中隨機抽取3人,至少有2個初中生”為事件,初中生中,閱讀時間不足10個小時的學生人數(shù)為人,高中生中,閱讀時間不足10個小時的學生人數(shù)為人記這3名初中生為,,,這2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年空調銷售渠道拓展與品牌建設服務合同3篇
- 二零二五版合租房屋租賃合同-含裝修保證金條款3篇
- 二零二五版建筑設備租賃合同書范例2篇
- 二零二五版法院判決指導下的債務償還與再融資合同3篇
- 二零二五版第5章第5節(jié)合同擔保及供應鏈金融合作協(xié)議3篇
- 二零二五版合同部合同合規(guī)性審查與風險預警合同3篇
- 二零二五年度酒店物業(yè)服務質量持續(xù)改進合同3篇
- 二零二五年青少年體育賽事服裝贊助合同3篇
- 二零二五版安防監(jiān)控設備研發(fā)與生產合同3篇
- 二零二五年度物流行業(yè)集體合同協(xié)議范本3篇
- 2024年08月云南省農村信用社秋季校園招考750名工作人員筆試歷年參考題庫附帶答案詳解
- 防詐騙安全知識培訓課件
- 心肺復蘇課件2024
- 2024年股東股權繼承轉讓協(xié)議3篇
- 2024-2025學年江蘇省南京市高二上冊期末數(shù)學檢測試卷(含解析)
- 四川省名校2025屆高三第二次模擬考試英語試卷含解析
- 湖南財政經(jīng)濟學院專升本管理學真題
- 2024年認證行業(yè)法律法規(guī)及認證基礎知識
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
- Proud-of-you中英文歌詞
- 基因的表達與調控.ppt
評論
0/150
提交評論