11分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理_第1頁(yè)
11分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理_第2頁(yè)
11分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理_第3頁(yè)
11分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理_第4頁(yè)
11分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理_第5頁(yè)
已閱讀5頁(yè),還剩30頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1.1分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理2011年9月29日天宮一號(hào)成功發(fā)射,此次有4種瀕臨滅絕的植物種子搭載“天宮一號(hào)”進(jìn)入太空,希望令種子產(chǎn)生基因變異.大哉,數(shù)學(xué)之為用!從火箭之速,到粒子之微,無(wú)處不用數(shù)學(xué)。

核糖核酸(RNA)分子由堿基按一定順序排列而成.已知堿基有4種,由成百上千個(gè)堿基組成的RNA分子的種數(shù)非常巨大.你知道它是怎樣算出來(lái)的嗎?計(jì)數(shù)問(wèn)題

在計(jì)算機(jī)中的字符由二進(jìn)制表示,英文字母和漢字所需的字節(jié)數(shù)不一樣.你知道為什么嗎?問(wèn)題1漢字在計(jì)算機(jī)的機(jī)器語(yǔ)言中是用16位的數(shù)字表示(0或1),你如何“數(shù)出”16位數(shù)字最多可以表示多少個(gè)不同的漢字?計(jì)數(shù)問(wèn)題用A~Z或0~9給教室的座位編號(hào)有多少不同的號(hào)碼?分析:

給座位編號(hào)有2類(lèi)方法,

第一類(lèi)方法,用英文字母,有26種號(hào)碼;

第二類(lèi)方法,用阿拉伯?dāng)?shù)字,有10種號(hào)碼;

所以有26+10=36

種不同號(hào)碼.

從甲地到乙地,可以乘火車(chē),也可以乘汽車(chē)。一天中,火車(chē)有4班,汽車(chē)有2班。那么一天中乘坐這些交通工具從甲地到乙地共有多少種不同的走法?分析:

從甲地到乙地有2類(lèi)方法,

第一類(lèi)方法,乘火車(chē),有4種方法;

第二類(lèi)方法,乘汽車(chē),有2種方法;

所以從甲地到乙地共有4+2=6

種方法.你能說(shuō)出這兩個(gè)問(wèn)題的共同特征嗎?分類(lèi)加法計(jì)數(shù)原理完成一件事有兩類(lèi)不同方案,在第1類(lèi)方案中有m種不同的方法,在第2類(lèi)方案中有n種不同的方法.那么完成這件事共有N=m+n種不同的方法兩類(lèi)中的方法不相同例在填寫(xiě)高考志愿表時(shí),一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專(zhuān)業(yè),具體如下:A大學(xué)生物學(xué)

化學(xué)

醫(yī)學(xué)

物理學(xué)

工程學(xué)B大學(xué)數(shù)學(xué)

會(huì)計(jì)學(xué)

信息技術(shù)學(xué)

法學(xué)這名同學(xué)可能的專(zhuān)業(yè)選擇共有多少種?分析:兩大學(xué)只能選一所一專(zhuān)業(yè),且沒(méi)有共同的強(qiáng)項(xiàng)專(zhuān)業(yè)54+=9這名同學(xué)可能的專(zhuān)業(yè)選擇共有9種

從甲地到乙地,可以乘火車(chē),也可以乘汽車(chē),還可以乘輪船。一天中,火車(chē)有4班,汽車(chē)有2班,輪船有3班。那么一天中乘坐這些交通工具從甲地到乙地共有多少種不同的走法?分析:

從甲地到乙地有3類(lèi)方法,

第一類(lèi)方法,乘火車(chē),有4種方法;

第二類(lèi)方法,乘汽車(chē),有2種方法;

第三類(lèi)方法,乘輪船,有3種方法;所以從甲地到乙地共有4+2+3=9種方法.

完成一件事有三類(lèi)不同方案,在第1類(lèi)方案中有m1種不同的方法,在第2類(lèi)方案中有m2種不同的方法,在第3類(lèi)方案中有m3種不同的方法。那么完成這件事共有

m1+m2+m3

種方法.

做一件事情,完成它可以有n類(lèi)辦法,在第一類(lèi)辦法中有m1種不同的方法,在第二類(lèi)辦法中有m2種不同的方法,……,在第n類(lèi)辦法中有mn種不同的方法。那么完成這件事共有__________種不同的方法N=m1+m2+…+mn

用前6個(gè)大寫(xiě)英文字母和1~9個(gè)阿拉伯?dāng)?shù)字,以A1,A2,,B1,B2

的方式給教室的座位編號(hào).有多少不同的號(hào)碼?A123456789A1A2A3A4A5A6A7A8A99種B1234567899種6×9=54如圖,由A村去B村的道路有3條,由B村去C村的道路有2條。從A村經(jīng)B村去C村,共有多少種不同的走法?A村B村C村北南中北南分析:

從A村經(jīng)B村去C村有2步,

第一步,由A村去B村有3種方法,

第二步,由B村去C村有2種方法,所以從A村經(jīng)B村去C村共有3×2=6

種不同的方法你能說(shuō)出這兩個(gè)問(wèn)題的共同特征嗎?分步乘法計(jì)數(shù)原理完成一件事需要兩個(gè)步驟,做第1步有m種不同的方法,做第2步有n種不同的方法,那么完成這件事共有N=m×n種不同的方法.例設(shè)某班有男生30名,女生24名.現(xiàn)要從中選出男、女各一名代表班級(jí)參加比賽,共有多少種不同的選法?分兩步進(jìn)行選取男女3024×=720再根據(jù)分步乘法原理若再要從語(yǔ),數(shù),英三科科任老師中選出一名代表參加比賽,那又共有多少種選法?老師3×=2160

如果完成一件事需要三個(gè)步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法,做第3步有m3種不同的方法,那么完成這件事共有_________________種不同的方法.N=m1×m2×m3做一件事情,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那么完成這件事有_____________________種不同的方法.N=m1×m2×…×mn

書(shū)架第1層放有4本不同的計(jì)算機(jī)書(shū),第2層放有3本不同的文藝書(shū),第3層放有2本不同的體育書(shū).(1)從書(shū)架中取1本書(shū),有多少種不同取法?有3類(lèi)方法,根據(jù)分類(lèi)加法計(jì)數(shù)原理N=4+3+2=9(2)從書(shū)架第1,2,3層各取1本書(shū),有多少種不同取法?分3步完成,根據(jù)分步乘法計(jì)數(shù)原理N=4×3×2=24解題關(guān)鍵:從總體上看做這件事情是“分類(lèi)完成”,還是“分步完成”.再根據(jù)其對(duì)應(yīng)的計(jì)數(shù)原理計(jì)算.練習(xí)

要從甲、乙、丙3幅不同的畫(huà)中選出2幅,分別掛在左、右兩邊墻上的指定位置,問(wèn)共有多少種不同的掛法?分兩步完成左邊右邊甲乙丙乙丙甲丙甲乙32第一步第二步×

在所有的兩位數(shù)中,個(gè)位數(shù)字大于十位數(shù)字的兩位數(shù)共有多少個(gè)?

分析1:

按個(gè)位數(shù)字是2,3,4,5,6,7,8,9分成8類(lèi),在每一類(lèi)中滿足條件的兩位數(shù)分別是:1個(gè),2個(gè),3個(gè),4個(gè),5個(gè),6個(gè),7個(gè),8個(gè).根據(jù)加法原理共有1+2+3+4+5+6+7+8=36(個(gè)).分析2:

按十位數(shù)字是1,2,3,4,5,6,7,8分成8類(lèi),在每一類(lèi)中滿足條件的兩位數(shù)分別是:8個(gè),7個(gè),6個(gè),5個(gè),4個(gè),3個(gè),2個(gè),1個(gè).根據(jù)加法原理共有8+7+6+5+4+3+2+1=36(個(gè))練習(xí)

一個(gè)三位密碼鎖,各位上數(shù)字由0,1,2,3,4,5,

6,7,8,9十個(gè)數(shù)字組成,可以設(shè)置多少種三位數(shù)的密碼(各位上的數(shù)字允許重復(fù))?首位數(shù)字不為0的密碼數(shù)是多少?首位數(shù)字是0的密碼數(shù)又是多少?

分析:

按密碼位數(shù),從左到右

依次設(shè)置第一位、第二位、第三

位,需分為三步完成;

第一步,m1=10;

第二步,m2=10;

第三步,m3=10.

根據(jù)乘法原理,共可以設(shè)置

N=10×10×10=103

種三位數(shù)的密碼。練習(xí)

答:首位數(shù)字不為0的密碼數(shù)是

N=9×10×10=9×102

種,

首位數(shù)字是0的密碼數(shù)是

N=1×10×10=102

種。

由此可以看出,

首位數(shù)字不為0的密碼數(shù)與首位數(shù)字是0的密碼數(shù)之和等于密碼總數(shù)。問(wèn):若設(shè)置四位、五位、六位、…、十位等密碼,密碼數(shù)分別有多少種?答:它們的密碼種數(shù)依次是104,105,106,……種。開(kāi)始子模塊118條執(zhí)行路徑子模塊328條執(zhí)行路徑子模塊245條執(zhí)行路徑子模塊543條執(zhí)行路徑子模塊438條執(zhí)行路徑結(jié)束A例5.計(jì)算機(jī)編程人員在編寫(xiě)好程序以后要對(duì)程序進(jìn)行測(cè)試。程序員需要知道到底有多少條執(zhí)行路(即程序從開(kāi)始到結(jié)束的線),以便知道需要提供多少個(gè)測(cè)試數(shù)據(jù)。一般的,一個(gè)程序模塊又許多子模塊組成,它的一個(gè)具有許多執(zhí)行路徑的程序模塊。問(wèn):這個(gè)程序模塊有多少條執(zhí)行路徑?另外為了減少測(cè)試時(shí)間,程序員需要設(shè)法減少測(cè)試次數(shù),你能幫助程序員設(shè)計(jì)一個(gè)測(cè)試方式,以減少測(cè)試次數(shù)嗎?開(kāi)始子模塊118條執(zhí)行路徑子模塊328條執(zhí)行路徑子模塊245條執(zhí)行路徑子模塊543條執(zhí)行路徑子模塊438條執(zhí)行路徑結(jié)束A分析:整個(gè)模塊的任意一條路徑都分兩步完成:第1步是從開(kāi)始執(zhí)行到A點(diǎn);第2步是從A點(diǎn)執(zhí)行到結(jié)束。而第步可由子模塊1或子模塊2或子模塊3來(lái)完成;第二步可由子模塊4或子模塊5來(lái)完成。因此,分析一條指令在整個(gè)模塊的執(zhí)行路徑需要用到兩個(gè)計(jì)數(shù)原理。例6.隨著人們生活水平的提高,某城市家庭汽車(chē)擁有量迅速增長(zhǎng),汽車(chē)牌照號(hào)碼需要擴(kuò)容。交通管理部門(mén)出臺(tái)了一種汽車(chē)牌照組成辦法,每一個(gè)汽車(chē)牌照都必須有3個(gè)不重復(fù)的英文字母和3個(gè)不重復(fù)的阿拉伯?dāng)?shù)字,并且3個(gè)字母必須合成一組出現(xiàn),3個(gè)數(shù)字也必須合成一組出現(xiàn),那么這種辦法共能給多少輛汽車(chē)上牌照?26x25x24x10x9x8=11232000

如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?練習(xí)解:按地圖A、B、C、D四個(gè)區(qū)域依次分四步完成,

第一步,m1=3種,

第二步,m2=2種,

第三步,m3=1種,

第四步,m4=1種,所以根據(jù)乘法原理,得到不同的涂色方案種數(shù)共有N=3×2×1×1=6種。

如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?練習(xí)問(wèn):若用2色、4色、5色等,結(jié)果又怎樣呢?

答:它們的涂色方案種數(shù)分別是0,4×3×2×2=48,5×4×3×3=180種。

如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?練習(xí)如圖,該電路從A到B共有多少條不同的線路可通電?AB分類(lèi)完成分步完成解:

從總體上看由A到B的通電線路可分二類(lèi),

第一類(lèi),m1=4條第二類(lèi),m3=2×2=4,條所以,根據(jù)加法原理,從A到B共有

N=4+4=8條不同的線路可通電

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論