![一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法_第1頁](http://file4.renrendoc.com/view/c127179a15ce52115d7ac72217b46e55/c127179a15ce52115d7ac72217b46e551.gif)
![一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法_第2頁](http://file4.renrendoc.com/view/c127179a15ce52115d7ac72217b46e55/c127179a15ce52115d7ac72217b46e552.gif)
![一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法_第3頁](http://file4.renrendoc.com/view/c127179a15ce52115d7ac72217b46e55/c127179a15ce52115d7ac72217b46e553.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法摘要:水體溶解氧(DO)是環(huán)境水質(zhì)監(jiān)測(cè)的重要指標(biāo)之一,其預(yù)測(cè)對(duì)于水質(zhì)保護(hù)、水環(huán)境管理具有重要意義。本文提出了一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法。本文采用了離散小波與離散偽吉諾夫變換(DWT-DP)對(duì)DO時(shí)間序列進(jìn)行了噪聲去除,然后將DO時(shí)間序列進(jìn)行了CEEMDAN分解處理,得到了多個(gè)固有模態(tài)函數(shù)(IMF)。接著,本文對(duì)每個(gè)IMF分別進(jìn)行了LSTM預(yù)測(cè),得到預(yù)測(cè)結(jié)果,并進(jìn)行了反屬性解歸一化。最后,通過將各個(gè)IMF的預(yù)測(cè)結(jié)果進(jìn)行加權(quán)平均得到了最終的DO預(yù)測(cè)值。實(shí)驗(yàn)結(jié)果表明,本文提出的方法能夠有效預(yù)測(cè)DO濃度,準(zhǔn)確率和預(yù)測(cè)效果優(yōu)秀。本文所提出的方法為水質(zhì)管理提供了有力的支持和借鑒。關(guān)鍵詞:水體溶解氧,CEEMDAN,LSTM,預(yù)測(cè),加權(quán)平均IntroductionWaterqualityisabasiccomponentofenvironmentalprotection,anddissolvedoxygen(DO)isoneofthemostimportantindicatorsofwaterquality.Itisdirectlyrelatedtothesurvivalofaquaticorganismsandthesustainabilityofaquaticecosystems.Therefore,accurateandtimelypredictionofDOconcentrationhasbecomeanimportantresearchtopicinenvironmentalscienceandengineering.TherearemanyfactorsthataffectDOconcentration,suchaswatertemperature,pH,andthepresenceofpollutants.Inaddition,DOconcentrationalsoshowsstrongtemporalvariability,whichmakesitspredictiondifficult.TraditionalstatisticalmodelsandartificialneuralnetworkmodelshavebeenwidelyusedforDOprediction.However,thesemodelshavetheirownlimitations,suchasbeingsensitivetoparametersandunabletohandlenonlinearandnon-stationarydatawell.Inrecentyears,machinelearningalgorithmshavebeenwidelyusedinenvironmentalscienceandengineeringduetotheirabilitytohandlenonlinearandnon-stationarydata.Deeplearningalgorithms,inparticular,haveshownexcellentperformanceinmanyfields,suchasimagerecognition,speechrecognition,andnaturallanguageprocessing.Inenvironmentalscienceandengineering,deeplearningalgorithmshavealsobeenappliedtoairandwaterqualitypredictionwithgoodresults.Inthispaper,anewDOpredictionmethodbasedonthecombinationofcompleteensembleempiricalmodedecompositionwithadaptivenoise(CEEMDAN)andlongshort-termmemory(LSTM)neuralnetworkisproposed.CEEMDANisadata-drivendecompositionmethodthatcandecomposetimeseriesintoseveralintrinsicmodefunctions(IMFs)withdifferenttimescales.LSTMisatypeofrecurrentneuralnetworkthatcaneffectivelyhandlelong-termdependenciesintimeseriesdata.MethodsDataPreprocessingTheDOdatasetusedinthisstudywasobtainedfromawaterqualitymonitoringstationlocatedinariverinChina.ThedatasetcoverstheperiodfromJanuary2017toDecember2018,withatotalof730dailyDOconcentrationrecords.TopreprocesstheDOtimeseriesdata,DWT-DPwasusedtoremovenoisefromthedataset.DWTisawidelyusedsignalprocessingmethodthatcandecomposeasignalintoaseriesofcomponentswithdifferentfrequencyranges.DPisamathematicalmethodthatcanfurthereliminatenoiseineachcomponent.TheDWT-DPmethodhasbeenshowntobeeffectiveinremovingnoisefromtimeseriesdata.CEEMDANandLSTMAfterpreprocessing,theDOtimeseriesdatawasdecomposedintoseveralIMFsusingCEEMDAN.CEEMDANisapowerfuldecompositionmethodthatcanextracttheintrinsicmodefunctions(IMFs)fromacomplextimeseriessignal.ThedecomposedIMFsrepresentdifferenttimescales,withthelowestIMFcorrespondingtothehighestfrequencyandthehighestIMFcorrespondingtothelowestfrequency.AfterCEEMDANdecomposition,eachIMFwasusedasinputtoanLSTMneuralnetworkforprediction.LSTMisatypeofrecurrentneuralnetworkthatcaneffectivelyhandlethetemporaldependenciesintimeseriesdata.TheLSTMmodelwastrainedusingtheAdamoptimizationalgorithmandmeansquarederrorlossfunction.WeightedAverageToobtainthefinalpredictionresult,aweightedaveragemethodwasusedtocombinethepredictionsbasedoneachIMF.TheweightswerecalculatedbasedontheR-squaredvaluesobtainedfromtheLSTMregressionmodelforeachIMF.ResultsTheproposedmethodwasevaluatedusingtheDOdatasetdescribedabove.Thedatasetwasrandomlydividedintotwoparts:thetrainingset(70%ofthedata)andthetestingset(30%ofthedata).TheLSTMmodelwastrainedusingthetrainingsetandtestedusingthetestingset.Thepredictionperformancewasevaluatedbasedonseveralmetrics,includingrootmeansquarederror(RMSE),meanabsoluteerror(MAE),andcoefficientofdetermination(R-squared).Theresultsshowedthattheproposedmethodhasgoodpredictionperformance,withR-squaredvaluesrangingfrom0.80to0.95fordifferentIMFs.TheweightedaverageofthepredictionsbasedoneachIMFfurtherimprovedthepredictionaccuracy,withRMSEandMAEvaluesreducedby14.2%and13.1%,respectively.ConclusionInthispaper,anewDOpredictionmethodbasedonthecombinationofCEEMDANandLSTMwasproposed.Theresultsshowedthattheproposedmethodhasgoodpre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 10吃飯有講究(說課稿)-部編版道德與法治一年級(jí)上冊(cè)
- 7 湯姆·索亞歷險(xiǎn)記(節(jié)選)說課稿-2023-2024學(xué)年六年級(jí)下冊(cè)語文統(tǒng)編版
- 2025集體土地房屋轉(zhuǎn)讓合同
- Unit 2 My week PB Let's talk (說課稿)-2024-2025學(xué)年人教PEP版英語五年級(jí)上冊(cè)001
- 2025產(chǎn)品銷售咨詢服務(wù)合同(中介撮合客戶)
- 2025合同模板車位租賃合同范本
- 10吃飯有講究 說課稿-2024-2025學(xué)年道德與法治一年級(jí)上冊(cè)統(tǒng)編版001
- 個(gè)人汽車信貸合同范例
- 鄉(xiāng)村道路改造雨季施工方案
- 重慶不銹鋼支撐施工方案
- 美容衛(wèi)生管理制度
- 銅陵2025年安徽銅陵郊區(qū)周潭鎮(zhèn)招聘鄉(xiāng)村振興專干和村級(jí)后備干部5人筆試歷年參考題庫附帶答案詳解
- 2025年紀(jì)檢辦公室工作計(jì)劃范文
- 七年級(jí)上學(xué)期歷史期末考試模擬卷02(原卷版)
- 橋梁建設(shè)施工組織設(shè)計(jì)方案
- (新版)中國動(dòng)態(tài)血壓監(jiān)測(cè)基層應(yīng)用指南(2024年)
- 礦物加工工程基礎(chǔ)知識(shí)單選題100道及答案解析
- 2024年同等學(xué)力申碩英語考試真題
- 浙江省杭州市2024年中考語文試卷(含答案)
- 世說新語原文及翻譯-副本
- 電力通信光纜檢修標(biāo)準(zhǔn)化作業(yè)指導(dǎo)書
評(píng)論
0/150
提交評(píng)論