一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法_第1頁
一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法_第2頁
一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法摘要:水體溶解氧(DO)是環(huán)境水質(zhì)監(jiān)測(cè)的重要指標(biāo)之一,其預(yù)測(cè)對(duì)于水質(zhì)保護(hù)、水環(huán)境管理具有重要意義。本文提出了一種基于CEEMDAN-LSTM組合的水體溶解氧預(yù)測(cè)方法。本文采用了離散小波與離散偽吉諾夫變換(DWT-DP)對(duì)DO時(shí)間序列進(jìn)行了噪聲去除,然后將DO時(shí)間序列進(jìn)行了CEEMDAN分解處理,得到了多個(gè)固有模態(tài)函數(shù)(IMF)。接著,本文對(duì)每個(gè)IMF分別進(jìn)行了LSTM預(yù)測(cè),得到預(yù)測(cè)結(jié)果,并進(jìn)行了反屬性解歸一化。最后,通過將各個(gè)IMF的預(yù)測(cè)結(jié)果進(jìn)行加權(quán)平均得到了最終的DO預(yù)測(cè)值。實(shí)驗(yàn)結(jié)果表明,本文提出的方法能夠有效預(yù)測(cè)DO濃度,準(zhǔn)確率和預(yù)測(cè)效果優(yōu)秀。本文所提出的方法為水質(zhì)管理提供了有力的支持和借鑒。關(guān)鍵詞:水體溶解氧,CEEMDAN,LSTM,預(yù)測(cè),加權(quán)平均IntroductionWaterqualityisabasiccomponentofenvironmentalprotection,anddissolvedoxygen(DO)isoneofthemostimportantindicatorsofwaterquality.Itisdirectlyrelatedtothesurvivalofaquaticorganismsandthesustainabilityofaquaticecosystems.Therefore,accurateandtimelypredictionofDOconcentrationhasbecomeanimportantresearchtopicinenvironmentalscienceandengineering.TherearemanyfactorsthataffectDOconcentration,suchaswatertemperature,pH,andthepresenceofpollutants.Inaddition,DOconcentrationalsoshowsstrongtemporalvariability,whichmakesitspredictiondifficult.TraditionalstatisticalmodelsandartificialneuralnetworkmodelshavebeenwidelyusedforDOprediction.However,thesemodelshavetheirownlimitations,suchasbeingsensitivetoparametersandunabletohandlenonlinearandnon-stationarydatawell.Inrecentyears,machinelearningalgorithmshavebeenwidelyusedinenvironmentalscienceandengineeringduetotheirabilitytohandlenonlinearandnon-stationarydata.Deeplearningalgorithms,inparticular,haveshownexcellentperformanceinmanyfields,suchasimagerecognition,speechrecognition,andnaturallanguageprocessing.Inenvironmentalscienceandengineering,deeplearningalgorithmshavealsobeenappliedtoairandwaterqualitypredictionwithgoodresults.Inthispaper,anewDOpredictionmethodbasedonthecombinationofcompleteensembleempiricalmodedecompositionwithadaptivenoise(CEEMDAN)andlongshort-termmemory(LSTM)neuralnetworkisproposed.CEEMDANisadata-drivendecompositionmethodthatcandecomposetimeseriesintoseveralintrinsicmodefunctions(IMFs)withdifferenttimescales.LSTMisatypeofrecurrentneuralnetworkthatcaneffectivelyhandlelong-termdependenciesintimeseriesdata.MethodsDataPreprocessingTheDOdatasetusedinthisstudywasobtainedfromawaterqualitymonitoringstationlocatedinariverinChina.ThedatasetcoverstheperiodfromJanuary2017toDecember2018,withatotalof730dailyDOconcentrationrecords.TopreprocesstheDOtimeseriesdata,DWT-DPwasusedtoremovenoisefromthedataset.DWTisawidelyusedsignalprocessingmethodthatcandecomposeasignalintoaseriesofcomponentswithdifferentfrequencyranges.DPisamathematicalmethodthatcanfurthereliminatenoiseineachcomponent.TheDWT-DPmethodhasbeenshowntobeeffectiveinremovingnoisefromtimeseriesdata.CEEMDANandLSTMAfterpreprocessing,theDOtimeseriesdatawasdecomposedintoseveralIMFsusingCEEMDAN.CEEMDANisapowerfuldecompositionmethodthatcanextracttheintrinsicmodefunctions(IMFs)fromacomplextimeseriessignal.ThedecomposedIMFsrepresentdifferenttimescales,withthelowestIMFcorrespondingtothehighestfrequencyandthehighestIMFcorrespondingtothelowestfrequency.AfterCEEMDANdecomposition,eachIMFwasusedasinputtoanLSTMneuralnetworkforprediction.LSTMisatypeofrecurrentneuralnetworkthatcaneffectivelyhandlethetemporaldependenciesintimeseriesdata.TheLSTMmodelwastrainedusingtheAdamoptimizationalgorithmandmeansquarederrorlossfunction.WeightedAverageToobtainthefinalpredictionresult,aweightedaveragemethodwasusedtocombinethepredictionsbasedoneachIMF.TheweightswerecalculatedbasedontheR-squaredvaluesobtainedfromtheLSTMregressionmodelforeachIMF.ResultsTheproposedmethodwasevaluatedusingtheDOdatasetdescribedabove.Thedatasetwasrandomlydividedintotwoparts:thetrainingset(70%ofthedata)andthetestingset(30%ofthedata).TheLSTMmodelwastrainedusingthetrainingsetandtestedusingthetestingset.Thepredictionperformancewasevaluatedbasedonseveralmetrics,includingrootmeansquarederror(RMSE),meanabsoluteerror(MAE),andcoefficientofdetermination(R-squared).Theresultsshowedthattheproposedmethodhasgoodpredictionperformance,withR-squaredvaluesrangingfrom0.80to0.95fordifferentIMFs.TheweightedaverageofthepredictionsbasedoneachIMFfurtherimprovedthepredictionaccuracy,withRMSEandMAEvaluesreducedby14.2%and13.1%,respectively.ConclusionInthispaper,anewDOpredictionmethodbasedonthecombinationofCEEMDANandLSTMwasproposed.Theresultsshowedthattheproposedmethodhasgoodpre

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論