![Knowledge-Representation-and-Reasoning-Villanova-University-維拉諾瓦大學(xué)知識(shí)表示與推理_第1頁](http://file4.renrendoc.com/view/3c99cc70ff6e8b3725a1a222ed9676b3/3c99cc70ff6e8b3725a1a222ed9676b31.gif)
![Knowledge-Representation-and-Reasoning-Villanova-University-維拉諾瓦大學(xué)知識(shí)表示與推理_第2頁](http://file4.renrendoc.com/view/3c99cc70ff6e8b3725a1a222ed9676b3/3c99cc70ff6e8b3725a1a222ed9676b32.gif)
![Knowledge-Representation-and-Reasoning-Villanova-University-維拉諾瓦大學(xué)知識(shí)表示與推理_第3頁](http://file4.renrendoc.com/view/3c99cc70ff6e8b3725a1a222ed9676b3/3c99cc70ff6e8b3725a1a222ed9676b33.gif)
![Knowledge-Representation-and-Reasoning-Villanova-University-維拉諾瓦大學(xué)知識(shí)表示與推理_第4頁](http://file4.renrendoc.com/view/3c99cc70ff6e8b3725a1a222ed9676b3/3c99cc70ff6e8b3725a1a222ed9676b34.gif)
![Knowledge-Representation-and-Reasoning-Villanova-University-維拉諾瓦大學(xué)知識(shí)表示與推理_第5頁](http://file4.renrendoc.com/view/3c99cc70ff6e8b3725a1a222ed9676b3/3c99cc70ff6e8b3725a1a222ed9676b35.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
KnowledgeRepresentationandReasoningFocusonSections10.1-10.3,10.6GuestLecturer:EricEatonUniversityofMarylandBaltimoreCountyLockheedMartinAdvancedTechnologyLaboratoriesAdaptedfromslidesbyTimFininandMariedesJardins.SomematerialadoptedfromnotesbyAndreasGeyer-Schulz,andChuckDyer.1OutlineApproachestoknowledgerepresentationSituationcalculusDeductive/logicalmethodsForward-chainingproductionrulesystemsSemanticnetworksFrame-basedsystemsDescriptionlogicsAbductive/uncertainmethodsWhat’sabduction?Whydoweneeduncertainty?BayesianreasoningOthermethods:Defaultreasoning,rule-basedmethods,Dempster-Shafertheory,fuzzyreasoning2IntroductionRealknowledgerepresentationandreasoningsystemscomeinseveralmajorvarieties.Thesedifferintheirintendeduse,expressivity,features,…SomemajorfamiliesareLogicprogramminglanguagesTheoremproversRule-basedorproductionsystemsSemanticnetworksFrame-basedrepresentationlanguagesDatabases(deductive,relational,object-oriented,etc.)ConstraintreasoningsystemsDescriptionlogicsBayesiannetworksEvidentialreasoning3OntologicalEngineeringStructuringknowledgeinausefulfashionAnontologyformallyrepresentsconceptsinadomainandrelationshipsbetweenthoseconceptsUsingtheproperrepresentationiskey!ItcanbethedifferencebetweensuccessandfailureOftencostlytoformallyengineerdomainknowledgeDomainexperts(a.k.a.subjectmatterexperts)Commercialontology,e.g.Cyc(cyc/,/)4RepresentingchangeRepresentingchangeintheworldinlogiccanbetricky.OnewayisjusttochangetheKBAddanddeletesentencesfromtheKBtoreflectchangesHowdowerememberthepast,orreasonaboutchanges?SituationcalculusisanotherwayAsituationisasnapshotoftheworldatsomeinstantintimeWhentheagentperformsanactionAinsituationS1,theresultisanewsituationS2.5Situations6SituationcalculusAsituationisasnapshotoftheworldatanintervaloftimeduringwhichnothingchangesEverytrueorfalsestatementismadewithrespecttoaparticularsituation.Addsituationvariablestoeverypredicate.at(hunter,1,1)becomesat(hunter,1,1,s0):at(hunter,1,1)istrueinsituation(i.e.,state)s0.Alternatively,addaspecial2nd-orderpredicate,holds(f,s),thatmeans“fistrueinsituations.”E.g.,holds(at(hunter,1,1),s0)Addanewfunction,result(a,s),thatmapsasituationsintoanewsituationasaresultofperformingactiona.Forexample,result(forward,s)isafunctionthatreturnsthesuccessorstate(situation)tosExample:Theactionagent-walks-to-location-ycouldberepresentedby(
x)(
y)(
s)(at(Agent,x,s)^~onbox(s))->at(Agent,y,result(walk(y),s))7DeducinghiddenpropertiesFromtheperceptualinformationweobtaininsituations,wecaninferpropertiesoflocations
l,sat(Agent,l,s)^Breeze(s)=>Breezy(l)
l,sat(Agent,l,s)^Stench(s)=>Smelly(l)NeitherBreezynorSmellyneedsituationargumentsbecausepitsandWumpusesdonotmovearound8DeducinghiddenpropertiesIIWhybothcausalanddiagnosticrules?Maybediagnosticrulesareenough?However,itisverytrickytoensurethattheyderivethestrongestpossibleconclusionsfromtheavailableinformation.Forexample,theabsenceofstenchorbreezeimpliesthatadjacentsquaresareOK:(
x,y,g,u,c,s)Percept([None,None,g,u,c],t)^At(Agent,x,s)^Adjacent(x,y)=>OK(y)butsometimesasquarecanbeOKevenwhensmellsandbreezesabound.Considerthefollowingmodel-basedrule:(
x,t)(
t(Wumpus,x,t)^Pit(x))<=>OK(x)Iftheaxiomscorrectlyandcompletelydescribethewaytheworldworksandthewayperceptsareproduced,theinferenceprocedurewillcorrectlyinferthestrongestpossibledescriptionoftheworldstategiventheavailablepercepts.9DeducinghiddenpropertiesIIWeneedtowritesomerulesthatrelatevariousaspectsofasingleworldstate(asopposedtoacrossstates)Therearetwomainkindsofsuchrules:Causalrulesreflecttheassumeddirectionofcausalityintheworld:(Al1,l2,s)At(Wumpus,l1,s)^Adjacent(l1,l2)=>Smelly(l2)(Al1,l2,s)At(Pit,l1,s)^Adjacent(l1,l2)=>Breezy(l2)Systemsthatreasonwithcausalrulesarecalledmodel-basedreasoningsystemsDiagnosticrulesinferthepresenceofhiddenpropertiesdirectlyfromthepercept-derivedinformation.Wehavealreadyseentwodiagnosticrules:(Al,s)At(Agent,l,s)^Breeze(s)=>Breezy(l)(Al,s)At(Agent,l,s)^Stench(s)=>Smelly(l)10Representingchange:
TheframeproblemFrameaxiom:Ifpropertyxdoesn’tchangeasaresultofapplyingactionainstates,thenitstaysthesame.On(x,z,s)Clear(x,s)
On(x,table,Result(Move(x,table),s))
On(x,z,Result(Move(x,table),s))On(y,z,s)yxOn(y,z,Result(Move(x,table),s))Theproliferationofframeaxiomsbecomesverycumbersomeincomplexdomains11TheframeproblemIISuccessor-stateaxiom:Generalstatementthatcharacterizeseverywayinwhichaparticularpredicatecanbecometrue:Eitheritcanbemade
true,oritcanalreadybetrueandnotbechanged:On(x,table,Result(a,s))
[On(x,z,s)Clear(x,s)a=Move(x,table)]
[On(x,table,s)aMove(x,z)]Incomplexworlds,whereyouwanttoreasonaboutlongerchainsofaction,eventhesetypesofaxiomsaretoocumbersomePlanningsystemsusespecial-purposeinferencemethodstoreasonabouttheexpectedstateoftheworldatanypointintimeduringamulti-stepplan12QualificationproblemQualificationproblem:Howcanyoupossiblycharacterizeeverysingleeffectofanaction,oreverysingleexceptionthatmightoccur?WhenIputmybreadintothetoaster,andpushthebutton,itwillbecometoastedaftertwominutes,unless…Thetoasterisbroken,or…Thepowerisout,or…Iblowafuse,or…Aneutronbombexplodesnearbyandfriesallelectricalcomponents,or…Ameteorstrikestheearth,andtheworldweknowitceasestoexist,or…13RamificationproblemSimilarly,it’sjustaboutimpossibletocharacterizeeverysideeffectofeveryaction,ateverypossiblelevelofdetail:WhenIputmybreadintothetoaster,andpushthebutton,thebreadwillbecometoastedaftertwominutes,and…Thecrumbsthatfalloffthebreadontothebottomofthetoasterovertraywillalsobecometoasted,and…Someoftheaforementionedcrumbswillbecomeburnt,and…Theoutsidemoleculesofthebreadwillbecome“toasted,”and…Theinsidemoleculesofthebreadwillremainmore“breadlike,”and…Thetoastingprocesswillreleaseasmallamountofhumidityintotheairbecauseofevaporation,and…TheheatingelementswillbecomeatinyfractionmorelikelytoburnoutthenexttimeIusethetoaster,and…Theelectricitymeterinthehousewillmoveupslightly,and…14Knowledgeengineering!Modelingthe“right”conditionsandthe“right”effectsatthe“right”levelofabstractionisverydifficultKnowledgeengineering(creatingandmaintainingknowledgebasesforintelligentreasoning)isanentirefieldofinvestigationManyresearchershopethatautomatedknowledgeacquisitionandmachinelearningtoolscanfillthegap:Ourintelligentsystemsshouldbeabletolearnabouttheconditionsandeffects,justlikewedo!Ourintelligentsystemsshouldbeabletolearnwhentopayattentionto,orreasonabout,certainaspectsofprocesses,dependingonthecontext!15PreferencesamongactionsAproblemwiththeWumpusworldknowledgebasethatwehavebuiltsofaristhatitisdifficulttodecidewhichactionisbestamonganumberofpossibilities.Forexample,todecidebetweenaforwardandagrab,axiomsdescribingwhenitisOKtomovetoasquarewouldhavetomentionglitter.Thisisnotmodular!Wecansolvethisproblembyseparatingfactsaboutactionsfromfactsaboutgoals.Thiswayouragentcanbereprogrammedjustbyaskingittoachievedifferentgoals.16PreferencesamongactionsThefirststepistodescribethedesirabilityofactionsindependentofeachother.Indoingthiswewilluseasimplescale:actionscanbeGreat,Good,Medium,Risky,orDeadly.Obviously,theagentshouldalwaysdothebestactionitcanfind:(
a,s)Great(a,s)=>Action(a,s)(
a,s)Good(a,s)^~(
b)Great(b,s)=>Action(a,s)(a,s)Medium(a,s)^(~(
b)Great(b,s)vGood(b,s))=>Action(a,s)...17PreferencesamongactionsWeusethisactionqualityscaleinthefollowingway.Untilitfindsthegold,thebasicstrategyforouragentis:Greatactionsincludepickingupthegoldwhenfoundandclimbingoutofthecavewiththegold.Goodactionsincludemovingtoasquarethat’sOKandhasn'tbeenvisitedyet.MediumactionsincludemovingtoasquarethatisOKandhasalreadybeenvisited.RiskyactionsincludemovingtoasquarethatisnotknowntobedeadlyorOK.DeadlyactionsaremovingintoasquarethatisknowntohaveapitoraWumpus.18Goal-basedagentsOncethegoldisfound,itisnecessarytochangestrategies.Sonowweneedanewsetofactionvalues.Wecouldencodethisasarule:(
s)Holding(Gold,s)=>GoalLocation([1,1]),s)Wemustnowdecidehowtheagentwillworkoutasequenceofactionstoaccomplishthegoal.Threepossibleapproachesare:Inference:goodversuswastefulsolutionsSearch:makeaproblemwithoperatorsandsetofstatesPlanning:tobediscussedlater
19SemanticNetworksAsemanticnetworkisasimplerepresentationschemethatusesagraphoflabelednodesandlabeled,directedarcstoencodeknowledge.Usuallyusedtorepresentstatic,taxonomic,conceptdictionariesSemanticnetworksaretypicallyusedwithaspecialsetofaccessingproceduresthatperform“reasoning”e.g.,inheritanceofvaluesandrelationshipsSemanticnetworkswereverypopularinthe‘60sand‘70sbutarelessfrequentlyusedtoday.OftenmuchlessexpressivethanotherKRformalismsThegraphicaldepictionassociatedwithasemanticnetworkisasignificantreasonfortheirpopularity.20NodesandArcsArcsdefinebinaryrelationshipsthatholdbetweenobjectsdenotedbythenodes.john5Sueagemothermother(john,sue)age(john,5)wife(sue,max)age(max,34)...34agefatherMaxwifehusbandage21SemanticNetworksTheISA(is-a)orAKO(a-kind-of)relationisoftenusedtolinkinstancestoclasses,classestosuperclassesSomelinks(e.g.hasPart)areinheritedalongISApaths.ThesemanticsofasemanticnetcanberelativelyinformalorveryformaloftendefinedattheimplementationlevelisaisaisaisaRobinBirdAnimalRedRustyhasPartWing22ReificationNon-binaryrelationshipscanberepresentedby“turningtherelationshipintoanobject”Thisisanexampleofwhatlogicianscall“reification”reifyv:consideranabstractconcepttoberealWemightwanttorepresentthegenericgiveeventasarelationinvolvingthreethings:agiver,arecipientandanobject,give(john,mary,book32)givemarybook32johnrecipientgiverobject23IndividualsandClassesManysemanticnetworksdistinguishnodesrepresentingindividualsandthoserepresentingclassesthe“subclass”relationfromthe“instance-of”relationsubclasssubclassinstanceinstanceRobinBirdAnimalRedRustyhasPartWinginstanceGenus24Linktypes25InferencebyInheritanceOneofthemainkindsofreasoningdoneinasemanticnetistheinheritanceofvaluesalongthesubclassandinstancelinks.Semanticnetworksdifferinhowtheyhandlethecaseofinheritingmultipledifferentvalues.Allpossiblevaluesareinherited,orOnlythe“l(fā)owest”valueorvaluesareinherited26Conflictinginheritedvalues27MultipleinheritanceAnodecanhaveanynumberofsuperclassesthatcontainit,enablinganodetoinheritpropertiesfrommultiple“parent”nodesandtheirancestorsinthenetwork.Theserulesareoftenusedtodetermineinheritanceinsuch“tangled”networkswheremultipleinheritanceisallowed:IfX<A<BandbothAandBhavepropertyP,thenXinheritsA’sproperty.IfX<AandX<BbutneitherA<BnorB<Z,andAandBhavepropertyPwithdifferentandinconsistentvalues,thenXdoesnotinheritpropertyPatall.28NixonDiamondThiswastheclassicexamplecirca1980.PersonRepublicanPersonQuakerinstanceinstancesubclasssubclassFALSEpacifistTRUEpacifist29FromSemanticNetstoFramesSemanticnetworksmorphedintoFrameRepresentationLanguagesinthe‘70sand‘80s.AframeisalotlikethenotionofanobjectinOOP,buthasmoremeta-data.Aframehasasetofslots.Aslotrepresentsarelationtoanotherframe(orvalue).Aslothasoneormorefacets.Afacetrepresentssomeaspectoftherelation.30FacetsAslotinaframeholdsmorethanavalue.Otherfacetsmightinclude:currentfillers(e.g.,values)defaultfillersminimumandmaximumnumberoffillerstyperestrictiononfillers(usuallyexpressedasanotherframeobject)attachedprocedures(if-needed,if-added,if-removed)saliencemeasureattachedconstraintsoraxiomsInsomesystems,theslotsthemselvesareinstancesofframes.3132DescriptionLogicsDescriptionlogicsprovideafamilyofframe-likeKRsystemswithaformalsemantics.E.g.,KL-ONE,LOOM,Classic,…Anadditionalkindofinferencedonebythesesystemsisautomaticclassificationfindingtherightplaceinahierarchyofobjectsforanewdescription
Currentsystemstakecaretokeepthelanguagessimple,sothatallinferencecanbedoneinpolynomialtime(inthenumberofobjects)ensuringtractabilityofinference33AbductionAbductionisareasoningprocessthattriestoformplausibleexplanationsforabnormalobservationsAbductionisdistinctlydifferentfromdeductionandinductionAbductionisinherentlyuncertainUncertaintyisanimportantissueinabductivereasoningSomemajorformalismsforrepresentingandreasoningaboutuncertaintyMycin’scertaintyfactors(anearlyrepresentative)Probabilitytheory(esp.Bayesianbeliefnetworks)Dempster-ShafertheoryFuzzylogicTruthmaintenancesystemsNonmonotonicreasoning34AbductionDefinition(Encyclopedia
Britannica):reasoningthatderivesanexplanatoryhypothesisfromagivensetoffactsTheinferenceresultisahypothesis
that,iftrue,couldexplaintheoccurrenceofthegivenfactsExamplesDendral,anexpertsystemtoconstruct3DstructureofchemicalcompoundsFact:massspectrometerdataofthecompoundanditschemicalformulaKB:chemistry,esp.strengthofdifferenttypesofboundsReasoning:formahypothetical3Dstructurethatsatisfiesthechemicalformula,andthatwouldmostlikelyproducethegivenmassspectrum35MedicaldiagnosisFacts:symptoms,labtestresults,andotherobservedfindings(calledmanifestations)KB:causalassociationsbetweendiseasesandmanifestationsReasoning:oneormorediseaseswhosepresencewouldcausallyexplaintheoccurrenceofthegivenmanifestationsManyotherreasoningprocesses(e.g.,wordsensedisambiguationinnaturallanguageprocess,imageunderstanding,criminalinvestigation)canalsobeenseenasabductivereasoningAbductionexamples(cont.)36Comparingabduction,deduction,
andinductionDeduction:majorpremise: Allballsintheboxareblackminorpremise: Theseballsarefromtheboxconclusion: TheseballsareblackAbduction:rule: Allballsintheboxareblackobservation: Theseballsareblackexplanation: TheseballsarefromtheboxInduction:case: Theseballsarefromtheboxobservation: Theseballsareblackhypothesizedrule: Allballintheboxareblack
A=>BA---------BA=>BB-------------PossiblyAWheneverAthenB-------------PossiblyA=>BDeduction
reasonsfromcausestoeffectsAbductionreasonsfromeffectstocausesInductionreasonsfromspecificcasestogeneralrules37Characteristicsofabductivereasoning“Conclusions”arehypotheses,nottheorems(maybefalseevenifrulesandfactsaretrue)E.g.,misdiagnosisinmedicineTheremaybemultipleplausiblehypothesesGivenrulesA=>BandC=>B,andfactB,bothAandCareplausiblehypothesesAbductionisinherentlyuncertainHypothesescanberankedbytheirplausibility(ifitcanbedetermined)38Characteristicsofabductivereasoning(cont.)Reasoningisoftenahypothesize-and-testcycle
Hypothesize:Postulatepossiblehypotheses,anyofwhichwouldexplainthegivenfacts(oratleastmostoftheimportantfacts)Test:TesttheplausibilityofallorsomeofthesehypothesesOnewaytotestahypothesisHistoaskwhethersomethingthatiscurrentlyunknown–butcanbepredictedfromH–isactuallytrueIfwealsoknowA=>DandC=>E,thenaskifDandEaretrueIfDistrueandEisfalse,thenhypothesisAbecomesmoreplausible(supportforAisincreased;supportforCisdecreased)39Characteristicsofabductivereasoning(cont.)Reasoningisnon-monotonic
Thatis,theplausibilityofhypothesescanincrease/decreaseasnewfactsarecollectedIncontrast,deductiveinferenceismonotonic:itneverchangeasentence’struthvalue,onceknownInabductive(andinductive)reasoning,somehypothesesmaybediscarded,andnewonesformed,whennewobservationsaremade40SourcesofuncertaintyUncertaininputsMissingdataNoisydataUncertainknowledgeMultiplecausesleadtomultipleeffectsIncompleteenumerationofconditionsoreffectsIncompleteknowledgeofcausalityinthedomainProbabilistic/stochasticeffectsUncertainoutputsAbductionandinductionareinherentlyuncertainDefaultreasoning,evenindeductivefashion,isuncertainIncompletedeductiveinferencemaybeuncertain
Probabilisticreasoningonlygivesprobabilisticresult
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代辦公室空間的靈活性與可變性設(shè)計(jì)
- 現(xiàn)代物流人才培養(yǎng)與教育創(chuàng)新
- 學(xué)校記者團(tuán)國(guó)慶節(jié)活動(dòng)方案
- 現(xiàn)代企業(yè)的辦公自動(dòng)化與多維度管理培訓(xùn)體系構(gòu)建研究
- 現(xiàn)代企業(yè)家的自我管理與時(shí)間管理策略
- 現(xiàn)代汽車制造工藝的變革與教育新模式
- 現(xiàn)代企業(yè)決策中的核心能力體現(xiàn)
- 國(guó)慶節(jié)主題活動(dòng)方案早教
- 2023三年級(jí)數(shù)學(xué)下冊(cè) 四 綠色生態(tài)園-解決問題第3課時(shí)說課稿 青島版六三制001
- 2024-2025學(xué)年高中歷史 專題八 當(dāng)今世界經(jīng)濟(jì)的全球化趨勢(shì) 二 當(dāng)今世界經(jīng)濟(jì)的全球化趨勢(shì)(3)教學(xué)說課稿 人民版必修2
- 無人機(jī)技術(shù)與遙感
- 燃煤電廠超低排放煙氣治理工程技術(shù)規(guī)范(HJ 2053-2018)
- 臨床敘事護(hù)理概述與應(yīng)用
- TSG-T7001-2023電梯監(jiān)督檢驗(yàn)和定期檢驗(yàn)規(guī)則宣貫解讀
- 冠脈介入進(jìn)修匯報(bào)
- 護(hù)理病例討論制度課件
- 養(yǎng)陰清肺膏的臨床應(yīng)用研究
- 恩施自治州建始東升煤礦有限責(zé)任公司東升煤礦礦產(chǎn)資源開發(fā)利用與生態(tài)復(fù)綠方案
- PDCA提高臥床患者踝泵運(yùn)動(dòng)的執(zhí)行率
- 蔣詩萌小品《誰殺死了周日》臺(tái)詞完整版
- DBJ-T 15-98-2019 建筑施工承插型套扣式鋼管腳手架安全技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論