版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省長(zhǎng)沙瀏陽市2024屆數(shù)學(xué)八上期末聯(lián)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,以正方形ABCD的中心為原點(diǎn)建立平面直角坐標(biāo)系,點(diǎn)A的坐標(biāo)為(2,2),則點(diǎn)C的坐標(biāo)為()A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)2.已知分式的值為0,那么x的值是()A.﹣1 B.﹣2 C.1 D.1或﹣23.下列命題中,真命題是()A.對(duì)頂角不一定相等 B.等腰三角形的三個(gè)角都相等C.兩直線平行,同旁內(nèi)角相等 D.等腰三角形是軸對(duì)稱圖形4.下列各式計(jì)算正確的是()A.2a2?3a3=6a6 B.(﹣2a)2=﹣4a2C.(a5)2=a7 D.(ab2)3=a3b65.如圖,在△ABD中,AD=AB,∠DAB=90?,在△ACE中,AC=AE,∠EAC=90?,CD,BE相交于點(diǎn)F,有下列四個(gè)結(jié)論:①DC=BE;②∠BDC=∠BEC;③DC⊥BE;④FA平分∠DFE.其中,正確的結(jié)論有()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)6.要使有意義,則的取值范圍是()A. B. C. D.7.如果把分式中和都擴(kuò)大10倍,那么分式的值()A.?dāng)U大2倍 B.?dāng)U大10倍 C.不變 D.縮小10倍8.9的平方根是()A.±3 B.3 C.±81 D.±39.“2019武漢軍運(yùn)會(huì)”部分體育項(xiàng)目的示意圖中是軸對(duì)稱圖形的是()A. B. C. D.10.下列各式可以用完全平方公式分解因式的是()A. B. C. D.11.小數(shù)0.0…0314用科學(xué)記數(shù)法表示為,則原數(shù)中小數(shù)點(diǎn)后“0”的個(gè)數(shù)為()A.4 B.6 C.7 D.812.如圖,點(diǎn)E是BC的中點(diǎn),AB⊥BC,DC⊥BC,AE平分∠BAD,下列結(jié)論:①∠AED=90°②∠ADE=∠CDE
③DE=BE
④AD=AB+CD,四個(gè)結(jié)論中成立的是()A. B. C. D.二、填空題(每題4分,共24分)13.若是完全平方公式,則__________.14.已知等腰三角形的一個(gè)外角是80°,則它頂角的度數(shù)為______.15.如圖,,于,于,且,則________.16.計(jì)算:______17.如果,那么_______________________.18.關(guān)于x的一次函數(shù)y=3kx+k-1的圖象無論k怎樣變化,總經(jīng)過一個(gè)定點(diǎn),這個(gè)定點(diǎn)的坐標(biāo)是.三、解答題(共78分)19.(8分)如圖,△ABC和都是等邊三角形,求:(1)AE長(zhǎng);(2)∠BDC的度數(shù):(3)AC的長(zhǎng).20.(8分)化簡(jiǎn):(1);(2)21.(8分)閱讀解答題:(幾何概型)條件:如圖1:是直線同旁的兩個(gè)定點(diǎn).問題:在直線上確定一點(diǎn),使的值最小;方法:作點(diǎn)關(guān)于直線對(duì)稱點(diǎn),連接交于點(diǎn),則,由“兩點(diǎn)之間,線段最短”可知,點(diǎn)即為所求的點(diǎn).(模型應(yīng)用)如圖2所示:兩村在一條河的同側(cè),兩村到河邊的距離分別是千米,千米,千米,現(xiàn)要在河邊上建造一水廠,向兩村送水,鋪設(shè)水管的工程費(fèi)用為每千米20000元,請(qǐng)你在上選擇水廠位置,使鋪設(shè)水管的費(fèi)用最省,并求出最省的鋪設(shè)水管的費(fèi)用.(拓展延伸)如圖,中,點(diǎn)在邊上,過作交于點(diǎn),為上一個(gè)動(dòng)點(diǎn),連接,若最小,則點(diǎn)應(yīng)該滿足()(唯一選項(xiàng)正確)A.B.C.D.22.(10分)現(xiàn)有3張邊長(zhǎng)為的正方形紙片(類),5張邊長(zhǎng)為的矩形紙片(類),5張邊長(zhǎng)為的正方形紙片(類).我們知道:多項(xiàng)式乘法的結(jié)果可以利用圖形的面積表示.例如:就能用圖①或圖②的面積表示.(1)請(qǐng)你寫出圖③所表示的一個(gè)等式:_______________;(2)如果要拼一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,則需要類紙片_____張,需要類紙片_____張,需要類紙片_____張;(3)從這13張紙片中取出若干張,每類紙片至少取出一張,把取出的這些紙片拼成一個(gè)正方形(按原紙張進(jìn)行無縫隙,無重疊拼接),則拼成的正方形的邊長(zhǎng)最長(zhǎng)可以是_______(用含的式子表示).23.(10分)如圖,三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.(1)畫出關(guān)于軸對(duì)稱的圖形,并寫出三個(gè)頂點(diǎn)的坐標(biāo);(2)在軸上作出一點(diǎn),使的值最小,求出該最小值.(保留作圖痕跡)24.(10分)已知:如圖,在中,,,(1)作的平分線,交于點(diǎn);作的中點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明)(2)連接,求證:.25.(12分)如圖,在△ABC中,BE、CD相交于點(diǎn)E,設(shè)∠A=2∠ACD=76°,∠2=143°,求∠1和∠DBE的度數(shù).26.如圖,在△ABC中,∠ABC15°,AB,BC2,以AB為直角邊向外作等腰直角△BAD,且∠BAD=90°;以BC為斜邊向外作等腰直角△BEC,連接DE.(1)按要求補(bǔ)全圖形;(2)求DE長(zhǎng);(3)直接寫出△ABC的面積.
參考答案一、選擇題(每題4分,共48分)1、C【解題分析】A,C點(diǎn)關(guān)于原點(diǎn)對(duì)稱,所以,C點(diǎn)坐標(biāo)是(-2,-2)選C.2、B【解題分析】試題解析:分析已知和所求,根據(jù)分式值為0的條件為:分子為0而分母不為0,不難得到(x-1)(x+2)=0且-1≠0;根據(jù)ab=0,a=0或b=0,即可解出x的值,再根據(jù)-1≠0,即可得到x的取值范圍,由此即得答案.本題解析:∵的值為0∴(x-1)(x+2)=0且-1≠0.解得:x=-2.故選B.3、D【分析】利用對(duì)頂角的性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)分別判斷后即可確定正確的選項(xiàng).【題目詳解】解:A、對(duì)頂角相等,故錯(cuò)誤,是假命題;B、等腰三角形的兩個(gè)底角相等,故錯(cuò)誤,是假命題;C、兩直線平行,同旁內(nèi)角互補(bǔ),故錯(cuò)誤,是假命題;D、等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是底邊上的高所在直線,故正確,是真命題.故選:D.【題目點(diǎn)撥】考查了命題與定理的知識(shí),解題的關(guān)鍵是了解對(duì)頂角的性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì),難度不大.4、D【分析】根據(jù)單項(xiàng)式乘法法則、積的乘方、冪的乘方法則計(jì)算即可.【題目詳解】A.2a2?3a3=6a5,故原題計(jì)算錯(cuò)誤;B.(﹣2a)2=4a2,故原題計(jì)算錯(cuò)誤;C.(a5)2=a10,故原題計(jì)算錯(cuò)誤;D.(ab2)3=a3b6,故原題計(jì)算正確.故選:D.【題目點(diǎn)撥】本題考查了單項(xiàng)式乘法,以及冪的乘方和積的乘方,關(guān)鍵是掌握計(jì)算法則.5、B【分析】根據(jù)∠BAD=∠CAE=90°,結(jié)合圖形可得∠CAD=∠BAE,再結(jié)合AD=AB,AC=AE,利用全等三角形的判定定理可得△CAD≌△EAB,再根據(jù)全等三角形的性質(zhì)即可判斷①;根據(jù)已知條件,結(jié)合圖形分析,對(duì)②進(jìn)行分析判斷,設(shè)AB與CD的交點(diǎn)為O,由(1)中△CAD≌△BAE可得∠ADC=∠ABE,再結(jié)合∠AOD=∠BOF,即可得到∠BFO=∠BAD=90°,進(jìn)而判斷③;對(duì)④,可通過作△CAD和△BAE的高,結(jié)合全等三角形的性質(zhì)得到兩個(gè)高之間的關(guān)系,再根據(jù)角平分線的判定定理即可判斷.【題目詳解】∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠CAD=∠BAE,又∵AD=AB,AC=AE,∴△CAD≌△EAB(SAS),∴DC=BE.故①正確.∵△CAD≌△EAB,∴∠ADC=∠ABE.設(shè)AB與CD的交點(diǎn)為O.∵∠AOD=∠BOF,∠ADC=∠ABE,∴∠BFO=∠BAD=90°,∴CD⊥BE.故③正確.過點(diǎn)A作AP⊥BE于P,AQ⊥CD于Q.∵△CAD≌△EAB,AP⊥BE,AQ⊥CD,∴AP=AQ,∴AF平分∠DFE.故④正確.②無法通過已知條件和圖形得到.故選B.【題目點(diǎn)撥】本題考查三角形全等的判定和性質(zhì),掌握三角形全等的判定方法和性質(zhì)應(yīng)用為解題關(guān)鍵.6、D【分析】根據(jù)二次根式有意義的條件可得,求解即可.【題目詳解】由題意得:,
解得:,
故選:D.【題目點(diǎn)撥】本題主要考查了二次根式有意義的條件,關(guān)鍵是掌握被開方數(shù)必須是非負(fù)數(shù).7、C【分析】根據(jù)題意,將分式換成10x,10y,再化簡(jiǎn)計(jì)算即可.【題目詳解】解:若和都擴(kuò)大10倍,則,故分式的值不變,故答案為:C.【題目點(diǎn)撥】本題考查了分式的基本性質(zhì),解題的關(guān)鍵是用10x,10y替換原分式中的x,y計(jì)算.8、D【解題分析】根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個(gè)數(shù)x,使得x2=a,則x就是a的平方根,由此即可解決問題.【題目詳解】∵(±3)2=9,∴9的平方根是±3,故選D.【題目點(diǎn)撥】本題考查了平方根的定義.注意一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根.9、C【解題分析】根據(jù)軸對(duì)稱圖形的性質(zhì)進(jìn)行判斷.【題目詳解】圖A,不是軸對(duì)稱圖形,故排除A;圖B,不是軸對(duì)稱圖形,故排除B;圖C,是軸對(duì)稱圖形,是正確答案;圖D,不是軸對(duì)稱圖形,故排除D;綜上,故本題選C.【題目點(diǎn)撥】如果一個(gè)平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形.10、D【分析】可以用完全平方公式分解因式的多項(xiàng)式必須是完全平方式,符合結(jié)構(gòu),對(duì)各選項(xiàng)分析判斷后利用排除法求解.【題目詳解】解:A、兩平方項(xiàng)符號(hào)相反,不能用完全平方公式,故本選項(xiàng)錯(cuò)誤;B、缺少乘積項(xiàng),不能用完全平方公式,故本選項(xiàng)錯(cuò)誤;C、乘積項(xiàng)不是這兩數(shù)積的兩倍,不能用完全平方公式,故本選項(xiàng)錯(cuò)誤;D、,故本選項(xiàng)正確;故選:D.【題目點(diǎn)撥】本題考查了用完全公式進(jìn)行因式分解的能力,解題的關(guān)鍵了解完全平方式的結(jié)構(gòu)特點(diǎn),準(zhǔn)確記憶公式,會(huì)根據(jù)公式的結(jié)構(gòu)判定多項(xiàng)式是否是完全平方式.11、C【分析】科學(xué)記數(shù)法的標(biāo)準(zhǔn)形式為a×10n(1≤|a|<10,n為整數(shù)).本題數(shù)據(jù)“”中的a=3.14,指數(shù)n等于?8,所以,需要把3.14的小數(shù)點(diǎn)向左移動(dòng)8位,就得到原數(shù),即可求解.【題目詳解】解:3.14×10?8=0.1.原數(shù)中小數(shù)點(diǎn)后“0”的個(gè)數(shù)為7,故答案為:C.【題目點(diǎn)撥】本題考查寫出用科學(xué)記數(shù)法表示的原數(shù).將科學(xué)記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),當(dāng)n>0時(shí),就是把a(bǔ)的小數(shù)點(diǎn)向右移動(dòng)n位所得到的數(shù),當(dāng)n<0時(shí),就是把a(bǔ)的小數(shù)點(diǎn)向左移動(dòng)位所得到的數(shù).12、A【分析】過E作EF⊥AD于F,易證得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而點(diǎn)E是BC的中點(diǎn),得到EC=EF=BE,則可證得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判斷出正確的結(jié)論.【題目詳解】過E作EF⊥AD于F,如圖,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB,∴BE=EF,AB=AF,∠AEF=∠AEB;而點(diǎn)E是BC的中點(diǎn),∴EC=EF=BE,所以③錯(cuò)誤;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正確;∴AD=AF+FD=AB+DC,所以④正確;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正確.故選A.【題目點(diǎn)撥】本題考查了角平分線的性質(zhì):角平分線上的點(diǎn)到角的兩邊的距離相等.也考查了三角形全等的判定與性質(zhì).二、填空題(每題4分,共24分)13、【分析】根據(jù)乘積二倍項(xiàng)和已知平方項(xiàng)確定出這兩個(gè)數(shù)為和,再利用完全平方式求解即可.【題目詳解】解:,.故答案為:16.【題目點(diǎn)撥】本題主要了完全平方式,根據(jù)乘積二倍項(xiàng)確定出這兩個(gè)數(shù)是求解的關(guān)鍵.14、100°.【分析】三角形內(nèi)角與相鄰的外角和為180,三角形內(nèi)角和為180,等腰三角形兩底角相等,100只可能是頂角.【題目詳解】等腰三角形一個(gè)外角為80,那相鄰的內(nèi)角為100,三角形內(nèi)角和為180,如果這個(gè)內(nèi)角為底角,內(nèi)角和將超過180,所以100只可能是頂角.故答案為:100.【題目點(diǎn)撥】本題主要考查三角形外角性質(zhì)、等腰三角形性質(zhì)及三角形內(nèi)角和定理;判斷出80的外角只能是頂角的外角是正確解答本題的關(guān)鍵.15、【分析】根據(jù)角平分線性質(zhì)求出OC平分∠AOB,即可求出答案.【題目詳解】∵CD⊥OA于D,CE⊥OB,CD=CE,∴OC平分∠AOB,∵∠AOB=50°,∴∠DOC=∠AOB=25°,故答案為:25°.【題目點(diǎn)撥】本題考查了角平分線的判定,注意:在角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上.16、【題目詳解】==917、【分析】根據(jù)二次根式的有意義的條件可求出x,進(jìn)而可得y的值,然后把x、y的值代入所求式子計(jì)算即可.【題目詳解】解:∵x-3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案為:.【題目點(diǎn)撥】本題考查了二次根式有意義的條件和負(fù)整數(shù)指數(shù)冪的運(yùn)算,屬于??碱}型,熟練掌握基本知識(shí)是解題的關(guān)鍵.18、(-,-1).【解題分析】試題分析:∵y=3kx+k-1,∴(3x+1)k=y+1,∵無論k怎樣變化,總經(jīng)過一個(gè)定點(diǎn),即k有無數(shù)個(gè)解,∴3x+1=0且y+1=0,∴x=-,y=-1,∴一次函數(shù)y=3kx+k-1過定點(diǎn)(-,-1).考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.三、解答題(共78分)19、(1);(2)150°;(3).【分析】(1)根據(jù)等邊三角形的性質(zhì)可利用SAS證明△BCD≌△ACE,再根據(jù)全等三角形的性質(zhì)即得結(jié)果;(2)在△ADE中,根據(jù)勾股定理的逆定理可得∠AED=90°,進(jìn)而可求出∠AEC的度數(shù),再根據(jù)全等三角形的性質(zhì)即得答案;(3)過C作CP⊥DE于點(diǎn)P,設(shè)AC與DE交于G,如圖,根據(jù)等邊三角形的性質(zhì)和勾股定理可得PE與CP的長(zhǎng),進(jìn)而可得AE=CP,然后即可根據(jù)AAS證明△AEG≌△CPG,于是可得AG=CG,PG=EG,根據(jù)勾股定理可求出AG的長(zhǎng),進(jìn)一步即可求出結(jié)果.【題目詳解】解:(1)∵△ABC和△EDC都是等邊三角形,∴BC=AC,CD=CE=DE=2,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,在△BCD與△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE,∴AE=BD=;(2)在△ADE中,∵,∴DE2+AE2==AD2,∴∠AED=90°,∵∠DEC=60°,∴∠AEC=150°,∵△BCD≌△ACE,∴∠BDC=∠AEC=150°;(3)過C作CP⊥DE于點(diǎn)P,設(shè)AC與DE交于G,如圖,∵△CDE是等邊三角形,∴PE=DE=1,CP=,∴AE=CP,在△AEG與△CPG中,∵∠AEG=∠CPG=90°,∠AGE=∠CGP,AE=CP,∴△AEG≌△CPG,∴AG=CG,PG=EG=,∴AG=,∴AC=2AG=.【題目點(diǎn)撥】本題考查了等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理及其逆定理等知識(shí),熟練掌握上述知識(shí)、靈活應(yīng)用全等三角形的判定與性質(zhì)是解題的關(guān)鍵.20、(1)1;(2)【分析】(1)根據(jù)平方差公式計(jì)算即可得解;
(2)先利用乘法公式進(jìn)行計(jì)算,然后合并同類項(xiàng)即可得解.【題目詳解】(1)原式(2)原式.【題目點(diǎn)撥】本題考查了乘法公式和二次根式的混合運(yùn)算,熟練掌握完全平方公式和平方差公式是解題關(guān)鍵.21、【模型應(yīng)用】圖見解析,最省的鋪設(shè)管道費(fèi)用是10000元;【拓展延伸】D【分析】1.【模型應(yīng)用】由于鋪設(shè)水管的工程費(fèi)用為每千米15000元,是一個(gè)定值,現(xiàn)在要在CD上選擇水廠位置,使鋪設(shè)水管的費(fèi)用最省,意思是在CD上找一點(diǎn)P,使AP與BP的和最小,設(shè)是A的對(duì)稱點(diǎn),使AP+BP最短就是使最短.2.【拓展延伸】作點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)F,連接AF交BC于P,此時(shí)PA+PE的值最小,依據(jù)軸對(duì)稱的性質(zhì)即可得到∠APC=∠DPE.【題目詳解】1.【模型應(yīng)用】如圖所示.延長(zhǎng)到,使,連接交于點(diǎn),點(diǎn)就是所選擇的位置.過作交延長(zhǎng)線于點(diǎn),∵,∴四邊形是矩形,∴,,在直角三角形中,,千米,∴最短路線千米,最省的鋪設(shè)管道費(fèi)用是(元).2.【拓展延伸】如圖,作點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)F,連接AF交BC于P,此時(shí)PA+PE的值最?。?/p>
由對(duì)稱性可知:∠DPE=∠FPD,
∵∠APC=∠FPD,
∴∠APC=∠DPE,
∴PA+PE最小時(shí),點(diǎn)P應(yīng)該滿足∠APC=∠DPE,
故選:D.【題目點(diǎn)撥】本題主要考查了軸對(duì)稱最短路徑問題、對(duì)頂角的性質(zhì)等知識(shí),解這類問題的關(guān)鍵是將實(shí)際問題抽象或轉(zhuǎn)化為幾何模型,把兩條線段的和轉(zhuǎn)化為一條線段,多數(shù)情況要作點(diǎn)關(guān)于某直線的對(duì)稱點(diǎn).22、(1);(2)1,4,3;(3)【分析】(1)從整體和部分兩方面表示該長(zhǎng)方形的面積即可;(2)根據(jù)拼成前后長(zhǎng)方形的面積不變可先算出該長(zhǎng)方形的面積再確定A類B類C類紙片的張數(shù);(3)由A類B類C類紙片的張數(shù)及面積可知構(gòu)成的正方形的面積最大為,利用完全平方公式可得邊長(zhǎng).【題目詳解】解:(1)從整體表示該圖形面積為,從部分表示該圖形面積為,所以可得;(2)該長(zhǎng)方形的面積為,A類紙片的面積為,B類紙片的面積為,C類紙片的面積為,所以需要類紙片1張,需要類紙片4張,需要類紙片3張;(3)A類紙片的面積為,有3張;B類紙片的面積為,有5張;C類紙片的面積為,有5張,所以能構(gòu)成的正方形的面積最大為,因?yàn)?,所以拼成的正方形的邊長(zhǎng)最長(zhǎng)可以是.【題目點(diǎn)撥】本題考查了整式乘法的圖形表示,靈活將圖形與代數(shù)式相結(jié)合是解題的關(guān)鍵.23、(1)見解析,;(2)見解析,.【分析】(1)先根據(jù)軸對(duì)稱的定義畫出點(diǎn),再順次連接即可得,根據(jù)點(diǎn)坐標(biāo)關(guān)于x軸對(duì)稱的變化規(guī)律即可得點(diǎn)的坐標(biāo);(2)根據(jù)軸對(duì)稱的性質(zhì)、兩點(diǎn)之間線段最短可得連接與x軸的交點(diǎn)P即為所求,最小值即為的長(zhǎng),由兩點(diǎn)之間的距離公式即可得.【題目詳解】(1)先根據(jù)軸對(duì)稱的定義畫出點(diǎn),再順次連接即可得,如圖所示:點(diǎn)坐標(biāo)關(guān)于x軸對(duì)稱的變化規(guī)律:橫坐標(biāo)不變、縱坐標(biāo)變?yōu)橄喾磾?shù)則;(2)由軸對(duì)稱的性質(zhì)得:則由兩點(diǎn)之間線段最短得:連接與x軸的交點(diǎn)P即為所求,最小值即為的長(zhǎng)由兩點(diǎn)之間的距離公式得:.【題目點(diǎn)撥】本題考查了畫軸對(duì)稱圖形與軸對(duì)稱的性質(zhì)、兩點(diǎn)之間線段最短等知識(shí)點(diǎn),熟記軸對(duì)稱圖形與性質(zhì)是解題關(guān)鍵.24、(1)見解析;(2)見解析【分析】(1)①以B為圓心,任意長(zhǎng)為半徑畫弧,交AB、BC于F、N,再以F、N為圓心,大于FN長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)M,過B、M畫射線,交AC于D,線段BD就是∠B的平分線;②分別以A、B為圓心,大于AB長(zhǎng)為半徑畫弧,兩弧交于X、Y,過X、Y畫直線與AB交于點(diǎn)E,點(diǎn)E就是AB的中點(diǎn);(2)首先根據(jù)角平分線的性質(zhì)可得∠ABD的度數(shù),進(jìn)而得到∠ABD=∠A,根據(jù)等角對(duì)等邊可得AD=BD,再加上條件AE=BE,ED=ED,即可利用SSS證明△ADE≌△BDE.【題目詳解】解:(1)作出的平分線;作出的中點(diǎn).(2)證明:,,,,在和中,.【題目點(diǎn)撥】此題主要考查了復(fù)雜作圖,以及全等三角形的判定,關(guān)鍵是掌握基本作圖的方法和證明三角形全等的判定方法.25、∠1=114°;∠DBE=29°【解題分析】試題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年甘肅會(huì)展中心有限責(zé)任公司招聘筆試參考題庫含答案解析
- 2025版智慧城市運(yùn)營(yíng)項(xiàng)目融資協(xié)議合同范本3篇
- 2025年度個(gè)人小戶型房產(chǎn)買賣及裝修改造合同4篇
- 2025年個(gè)人森林撫育與更新承包合同4篇
- 2025年全球及中國(guó)醫(yī)用協(xié)作機(jī)器人行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球鄰氯苯腈(氯化法)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球觸控?zé)粜袠I(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025版拖拉機(jī)銷售與保險(xiǎn)服務(wù)合同范本6篇
- 2025年度房產(chǎn)租賃合同(含租金調(diào)整及違約責(zé)任)3篇
- 2025年度個(gè)人設(shè)備租賃貸款合同范本7篇
- 2024年全國(guó)職業(yè)院校技能大賽高職組(研學(xué)旅行賽項(xiàng))考試題庫(含答案)
- 2025年溫州市城發(fā)集團(tuán)招聘筆試參考題庫含答案解析
- 2025年中小學(xué)春節(jié)安全教育主題班會(huì)課件
- 2025版高考物理復(fù)習(xí)知識(shí)清單
- 計(jì)量經(jīng)濟(jì)學(xué)練習(xí)題
- 除數(shù)是兩位數(shù)的除法練習(xí)題(84道)
- 2025年度安全檢查計(jì)劃
- 2024年度工作總結(jié)與計(jì)劃標(biāo)準(zhǔn)版本(2篇)
- 全球半導(dǎo)體測(cè)試探針行業(yè)市場(chǎng)研究報(bào)告2024
- 反走私課件完整版本
- 2024年注冊(cè)計(jì)量師-一級(jí)注冊(cè)計(jì)量師考試近5年真題附答案
評(píng)論
0/150
提交評(píng)論