版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省岳陽市高中名校2023年高三下學(xué)期第一次診斷性考試數(shù)學(xué)試題試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.322.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.3.設(shè)非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件4.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進(jìn)行分析,隨機抽取了200分到450分之間的2000名學(xué)生的成績,并根據(jù)這2000名學(xué)生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內(nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.16005.已知函數(shù),滿足對任意的實數(shù),都有成立,則實數(shù)的取值范圍為()A. B. C. D.6.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關(guān)于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.7.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.8.一個組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.9.若函數(shù)函數(shù)只有1個零點,則的取值范圍是()A. B. C. D.10.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.9811.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.12.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機到達(dá)小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實數(shù)x,y滿足,則點表示的區(qū)域面積為______.14.設(shè)向量,,且,則_________.15.已知關(guān)于的不等式對于任意恒成立,則實數(shù)的取值范圍為_________.16.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在處導(dǎo)數(shù)相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數(shù)的取值范圍.18.(12分)已知函數(shù),.(1)當(dāng)時,討論函數(shù)的零點個數(shù);(2)若在上單調(diào)遞增,且求c的最大值.19.(12分)記數(shù)列的前項和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項公式;(2)記數(shù)列的前項和為,求.20.(12分)以直角坐標(biāo)系的原點為極點,軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點,求的最大值.21.(12分)已知橢圓的右焦點為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點,、分別為線段、的中點,若坐標(biāo)原點在以為直徑的圓上,且,求的取值范圍.22.(10分)如圖,設(shè)點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當(dāng)時,(1)求橢圓的方程.(2)當(dāng)時,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復(fù)的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進(jìn)行抽樣,屬于基礎(chǔ)題.2、D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運算能力.3、C【解析】
利用數(shù)量積的定義可得,即可判斷出結(jié)論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計算能力,屬于基礎(chǔ)題.4、B【解析】
由圖可列方程算得a,然后求出成績在內(nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績在內(nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內(nèi)的頻率,所以成績在內(nèi)的學(xué)生人數(shù).故選:B【點睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.5、B【解析】
由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實數(shù)的取值范圍是.故選:B.【點睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時還要考慮分段點處函數(shù)值的大小關(guān)系,考查運算求解能力,屬于中等題.6、C【解析】
易得,,又,平方計算即可得到答案.【詳解】設(shè)雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.7、C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.8、C【解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.9、C【解析】
轉(zhuǎn)化有1個零點為與的圖象有1個交點,求導(dǎo)研究臨界狀態(tài)相切時的斜率,數(shù)形結(jié)合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設(shè)切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導(dǎo)數(shù)在函數(shù)零點問題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.10、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計算即可,屬于基礎(chǔ)題.11、D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.12、C【解析】
設(shè)出兩人到達(dá)小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進(jìn)行求解即可.【詳解】設(shè)小王和外賣小哥到達(dá)小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標(biāo)系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學(xué)運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先畫出滿足條件的平面區(qū)域,求出交點坐標(biāo),利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.14、【解析】
根據(jù)向量的數(shù)量積的計算,以及向量的平方,簡單計算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點睛】本題考查向量的坐標(biāo)計算,主要考查計算,屬基礎(chǔ)題.15、【解析】
先將不等式對于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因為,,對任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時等號成立,又因為在內(nèi)有解,,則,即:,所以實數(shù)的取值范圍:.故答案為:.【點睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計算能力.16、【解析】
根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進(jìn)而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)見解析(II)【解析】
(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導(dǎo)數(shù)相等,得到,得,由韋達(dá)定理得,由基本不等式得,得,由題意得,令,則,令,,利用導(dǎo)數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達(dá)定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當(dāng)自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點,矛盾.由對任意,只有一個解,得為上的遞增函數(shù),得,令,則,得【點睛】本題考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的運算及其應(yīng)用,同時考查邏輯思維能力和綜合應(yīng)用能力屬難題.18、(1)見解析(2)2【解析】
(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問題為與的交點問題,利用導(dǎo)函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導(dǎo)函數(shù)可得,則,即,再設(shè),利用導(dǎo)函數(shù)求得的最小值,則,進(jìn)而求解.【詳解】(1)當(dāng)時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則的最大值為,且當(dāng)時,;當(dāng)時,,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當(dāng)時,直線和函數(shù)的圖象有兩個交點,即函數(shù)有兩個零點;當(dāng)或,即或時,直線和函數(shù)的圖象有一個交點,即函數(shù)有一個零點;當(dāng)即時,直線與函數(shù)的象沒有交點,即函數(shù)無零點.(2)因為在上單調(diào)遞增,即在上恒成立,設(shè),則,①若,則,則在上單調(diào)遞減,顯然,在上不恒成立;②若,則,在上單調(diào)遞減,當(dāng)時,,故,單調(diào)遞減,不符合題意;③若,當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,所以,由,得,設(shè),則,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增,所以,所以,又,所以,即c的最大值為2.【點睛】本題考查利用導(dǎo)函數(shù)研究函數(shù)的零點問題,考查利用導(dǎo)函數(shù)求最值,考查運算能力與分類討論思想.19、(1)證明見解析,;(2)【解析】
(1)由成等差數(shù)列,可得到,再結(jié)合公式,消去,得到,再給等式兩邊同時加1,整理可證明結(jié)果;(2)將(1)得到的代入中化簡后再裂項,然后求其前項和.【詳解】(1)由成等差數(shù)列,則,即,①當(dāng)時,,又,②由①②可得:,即,時,.所以是以3為首項,3為公比的等比數(shù)列,,所以.(2),所以.【點睛】此題考查了數(shù)列遞推式,等比數(shù)列的證明,裂列相消求和,考查了學(xué)生分析問題和解決問題的能力,屬于中檔題.20、(1);(2)10【解析】
(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線C的極坐標(biāo)方程;(2)將代入曲線C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線C的參數(shù)方程為,消去參數(shù),可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時,取最大值,最大值為10.【點睛】本題主要考查了參數(shù)方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- TAT-PEG-Cy3-生命科學(xué)試劑-MCE-8780
- O-Methylcassythine-生命科學(xué)試劑-MCE-5707
- 1-2-Distearoyl-3-palmitoyl-rac-glycerol-1-2-Stearin-3-palmitin-生命科學(xué)試劑-MCE-3544
- 2025年度解除競業(yè)限制協(xié)議通知范本及注意事項
- 二零二五年度版果園承包合同:果業(yè)人才培養(yǎng)與引進(jìn)合作協(xié)議
- 二零二五年度2025年度自愿調(diào)解協(xié)議書-知識產(chǎn)權(quán)侵權(quán)糾紛調(diào)解協(xié)議書
- 2025年度共享汽車使用權(quán)授權(quán)管理協(xié)議
- 二零二五年度房屋租賃合同終止及換房新約
- 施工現(xiàn)場管理的方法
- 高效記憶小學(xué)英語詞匯的秘訣
- 2024化工園區(qū)危險品運輸車輛停車場建設(shè)規(guī)范
- 工地試驗室質(zhì)量手冊
- 信息資源管理(馬費成-第三版)復(fù)習(xí)重點
- 郵輪外部市場營銷類型
- GB/T 42460-2023信息安全技術(shù)個人信息去標(biāo)識化效果評估指南
- 05G359-3 懸掛運輸設(shè)備軌道(適用于一般混凝土梁)
- 工程與倫理課程
- CKDMBD慢性腎臟病礦物質(zhì)及骨代謝異常
- 潮汕英歌舞課件
- 田字格模版內(nèi)容
- 第一章 公共政策分析的基本理論與框架
評論
0/150
提交評論