版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年湖北省荊門市高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列為等比數(shù)列,則“,”是“為遞減數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.在正方體中,分別是線段的中點(diǎn),則點(diǎn)到直線的距離是()A. B.C. D.3.已知雙曲線離心率為2,過點(diǎn)的直線與雙曲線C交于A,B兩點(diǎn),且點(diǎn)P恰好是弦的中點(diǎn),則直線的方程為()A. B.C. D.4.已知x是上的一個(gè)隨機(jī)的實(shí)數(shù),則使x滿足的概率為()A. B.C. D.5.設(shè)是雙曲線與圓在第一象限的交點(diǎn),,分別是雙曲線的左,右焦點(diǎn),若,則雙曲線的離心率為()A. B.C. D.6.拋物線y=4x2的焦點(diǎn)坐標(biāo)是()A.(0,1) B.(1,0)C. D.7.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為()A. B.C. D.8.1202年,意大利數(shù)學(xué)家斐波那契出版了他的《算盤全書》.他在書中收錄了一些有意思的問題,其中有一個(gè)關(guān)于兔子繁殖的問題:如果1對(duì)兔子每月生1對(duì)小兔子(一雌一雄),而每1對(duì)小兔子出生后的第3個(gè)月里,又能生1對(duì)小兔子,假定在不發(fā)生死亡的情況下,如果用Fn表示第n個(gè)月的兔子的總對(duì)數(shù),則有(n>2),.設(shè)數(shù)列{an}滿足:an=,則數(shù)列{an}的前36項(xiàng)和為()A.11 B.12C.13 D.189.若向量,,則()A. B.C. D.10.若定義在R上的函數(shù)滿足,則不等式的解集為()A. B.C. D.11.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.12.橢圓的()A.焦點(diǎn)在x軸上,長軸長為2 B.焦點(diǎn)在y軸上,長軸長為2C.焦點(diǎn)在x軸上,長軸長為 D.焦點(diǎn)在y軸上,長軸長為二、填空題:本題共4小題,每小題5分,共20分。13.直線與直線的夾角大小等于_______14.若橢圓的焦點(diǎn)在軸上,過點(diǎn)作圓的切線,切點(diǎn)分別為,,直線恰好經(jīng)過橢圓的上焦點(diǎn)和右頂點(diǎn),則橢圓的方程是________________15.若平面法向量,直線的方向向量為,則與所成角的大小為___________.16.直線與圓交于A、B兩點(diǎn),當(dāng)弦AB的長度最短時(shí),則三角形ABC的面積為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的極值.18.(12分)某蓮藕種植塘每年的固定成本是2萬元,每年最大規(guī)模的種植量是8萬千克,每種植1萬千克蓮藕,成本增加0.5萬元.種植萬千克蓮藕的銷售額(單位:萬元)是(是常數(shù)),若種植2萬千克蓮藕,利潤是1.5萬元,求:(1)種植萬千克蓮藕利潤(單位:萬元)為的解析式;(2)要使利潤最大,每年需種植多少萬千克蓮藕,并求出利潤的最大值.19.(12分)已知橢圓C:的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為2.(1)橢圓C的方程;(2)設(shè)直線l:交橢圓C于A,B兩點(diǎn),且,求m的值.20.(12分)已知直線,直線經(jīng)過點(diǎn)且與直線平行,設(shè)直線分別與x軸,y軸交于A,B兩點(diǎn).(1)求點(diǎn)A和B的坐標(biāo);(2)若圓C經(jīng)過點(diǎn)A和B,且圓心C在直線上,求圓C的方程.21.(12分)已知等差數(shù)列各項(xiàng)均不為零,為其前項(xiàng)和,點(diǎn)在函數(shù)的圖像上.(1)求的通項(xiàng)公式;(2)若數(shù)列滿足,求的前項(xiàng)和;(3)若數(shù)列滿足,求的前項(xiàng)和的最大值、最小值.22.(10分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)求在區(qū)間上的最值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】本題可依次判斷“,”是否是“為遞減數(shù)列”的充分條件以及必要條件,即可得出結(jié)果.【詳解】若等比數(shù)列滿足、,則數(shù)列為遞減數(shù)列,故“,”是“為遞減數(shù)列”的充分條件,因?yàn)槿舻缺葦?shù)列滿足、,則數(shù)列也是遞減數(shù)列,所以“,”不是“為遞減數(shù)列”的必要條件,綜上所述,“,”是“為遞減數(shù)列”的充分不必要條件,故選:A.【點(diǎn)睛】本題考查充分條件以及必要條件的判定,考查等比數(shù)列以及遞減數(shù)列的相關(guān)性質(zhì),體現(xiàn)了基礎(chǔ)性和綜合性,考查推理能力,是簡(jiǎn)單題.2、A【解析】以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,然后,列出計(jì)算公式進(jìn)行求解即可【詳解】如圖,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系.因?yàn)?,所以,所以,則點(diǎn)到直線的距離故選:A3、C【解析】運(yùn)用點(diǎn)差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因?yàn)辄c(diǎn)P恰好是弦的中點(diǎn),所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗(yàn)滿足題意故選:C4、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進(jìn)行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.5、B【解析】先由雙曲線定義與題中條件得到,,求出,,再由題意得到,即可根據(jù)勾股定理求出結(jié)果.【詳解】解:根據(jù)雙曲線定義:,,∴,∴,,,∴是圓的直徑,∴,中,,得故選【點(diǎn)睛】本題主要考查求雙曲線的離心率,熟記雙曲線的簡(jiǎn)單性質(zhì)即可,屬于??碱}型.6、C【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此可拋物線的焦點(diǎn)坐標(biāo)得選項(xiàng).【詳解】解:將拋物線y=4x2的化為標(biāo)準(zhǔn)方程為x2=y(tǒng),p=,開口向上,焦點(diǎn)在y軸的正半軸上,故焦點(diǎn)坐標(biāo)為(0,).故選:C7、B【解析】結(jié)合已知條件,利用對(duì)稱的概念即可求解.【詳解】不妨設(shè)點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為,則線段垂直于軸且的中點(diǎn)在軸,從而點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為.故選:B.8、B【解析】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項(xiàng)都為奇數(shù),再根據(jù)an=,即可求出數(shù)列{an}的前36項(xiàng)和【詳解】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項(xiàng)都為奇數(shù),∴前36項(xiàng)共有12項(xiàng)為偶數(shù),∴數(shù)列{an}的前36項(xiàng)和為12×1+24×0=12.故選:B9、D【解析】由向量數(shù)量積的坐標(biāo)運(yùn)算求得數(shù)量積,模,結(jié)合向量的共線定義判斷【詳解】由已知,,,與不垂直,若,則,,但是,,因此與不共線故選:D10、B【解析】構(gòu)造函數(shù),根據(jù)題意,求得其單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】構(gòu)造函數(shù),則,故在上單調(diào)遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,以及利用函數(shù)單調(diào)性求解不等式,解決本題的關(guān)鍵是根據(jù)題意構(gòu)造函數(shù),屬中檔題.11、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.12、B【解析】把橢圓方程化為標(biāo)準(zhǔn)方程可判斷焦點(diǎn)位置和求出長軸長.【詳解】橢圓化為標(biāo)準(zhǔn)方程為,所以,且,所以橢圓焦點(diǎn)在軸上,,長軸長為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)直線的傾斜角可得答案.【詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.14、【解析】設(shè)過點(diǎn)的圓的切線為,分類討論求得直線分別與圓的切線,求得直線的方程,從而得到直線與軸、軸的交點(diǎn)坐標(biāo),得到橢圓的右焦點(diǎn)和上頂點(diǎn),進(jìn)而求得橢圓的方程.【詳解】設(shè)過點(diǎn)的圓的切線分別為,即,當(dāng)直線與軸垂直時(shí),不存在,直線方程為,恰好與圓相切于點(diǎn);當(dāng)直線與軸不垂直時(shí),原點(diǎn)到直線的距離為,解得,此時(shí)直線的方程為,此時(shí)直線與圓相切于點(diǎn),因此,直線的斜率為,直線的方程為,所以直線交軸交于點(diǎn),交于軸于點(diǎn),橢圓的右焦點(diǎn)為,上頂點(diǎn)為,所以,可得,所以橢圓的標(biāo)準(zhǔn)方程為.故答案為:.15、##【解析】設(shè)直線與平面所成角為,則,直接利用直線與平面所成的角的向量計(jì)算公式,即可求出直線與平面所成的角【詳解】解:已知直線的方向向量為,平面的法向量為,設(shè)直線與平面所成角為,則,,,所以直線與平面所成角為.故答案為:.16、【解析】由于直線過定點(diǎn),所以當(dāng)時(shí),弦AB的長度最短,然后先求出的長,再利用勾股定理可求出的長,從而可求出三角形ABC的面積【詳解】因?yàn)橹本€恒過定點(diǎn),圓的圓心,半徑為,所以當(dāng)時(shí),弦AB的長度最短,因?yàn)椋?,所以三角形ABC的面積為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞減區(qū)間為和,單調(diào)遞增區(qū)間為(2)極小值,極大值為【解析】(1)先對(duì)函數(shù)求導(dǎo),然后根據(jù)導(dǎo)數(shù)的正負(fù)可求出函數(shù)的單調(diào)區(qū)間,(2)根據(jù)(1)中求得單調(diào)區(qū)間可求出函數(shù)的極值【小問1詳解】.當(dāng)變化時(shí),,的變化情況如下表所示:00減極小值增極大值減的單調(diào)遞減區(qū)間為和,單調(diào)遞增區(qū)間為.【小問2詳解】由(1)可知在處取得極小值,在處取得極大值.的極小值為,極大值為.18、(1),;(2)6萬千克,萬元.【解析】(1)根據(jù)題意找等量關(guān)系即可求g(x)解析式,根據(jù)函數(shù)值可求a;(2)根據(jù)g(x)導(dǎo)數(shù)研究其單調(diào)性并求其最大值即可.【小問1詳解】種植萬千克蓮藕的利潤(單位:萬元)為:,,即,,當(dāng)時(shí),,解得,故,;【小問2詳解】,當(dāng)時(shí),,當(dāng)時(shí),,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,∴時(shí),利潤最大為萬元.19、(1);(2).【解析】(1)通過短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離可知,進(jìn)而利用離心率的值計(jì)算即得結(jié)論;(2)設(shè),聯(lián)立直線與橢圓方程,消去y得到關(guān)于x的一元二次方程,得到根與系數(shù)的關(guān)系,再利用弦長公式即可得出.【詳解】解:(1)由題意可得,解得:,,橢圓C的方程為;(2)設(shè),聯(lián)立,得,,,,解得.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、韋達(dá)定理、弦長公式,屬于中檔題.20、(1),;(2).【解析】(1)由直線平行及所過的點(diǎn),應(yīng)用點(diǎn)斜式寫出直線方程,進(jìn)而求A、B坐標(biāo).(2)由(1)求出垂直平分線方程,并聯(lián)立直線求圓心坐標(biāo),即可求圓的半徑,進(jìn)而寫出圓C的方程.【小問1詳解】由題設(shè),的斜率為,又直線與直線平行且過,所以直線為,即,令,則;令,則.所以,.【小問2詳解】由(1)可得:垂直平分線為,即,聯(lián)立,可得,即,故圓的半徑為,所以圓C的方程為.21、(1)(2)(3)最大值為,最小值為【解析】(1)將點(diǎn)代入函數(shù)解析再結(jié)合前和即可求解;(2)運(yùn)用錯(cuò)位相減法或分組求和法都可以求解;(3)將數(shù)列的通項(xiàng)變形為,再求和,通過分類討論從單調(diào)性上分析求解即可.【小問1詳解】因?yàn)辄c(diǎn)在函數(shù)的圖像上,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 渤海理工職業(yè)學(xué)院《導(dǎo)演基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 畢節(jié)幼兒師范高等??茖W(xué)?!镀髽I(yè)策劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 中學(xué)教師聘用合同范本
- 賓館裝修合同范本
- 三亞2025安置房購買合同范例2篇
- 2025年度旅游景區(qū)安全員聘用與管理合同3篇
- 2025版駕校經(jīng)營權(quán)全域拓展服務(wù)合同3篇
- 2025年度海洋工程設(shè)備安裝與檢測(cè)合同模板2篇
- 2025年度家具行業(yè)財(cái)務(wù)管理合同范本2篇
- 2025年度原料藥環(huán)保合規(guī)審查與咨詢合同3篇
- 江西省景德鎮(zhèn)市2023-2024學(xué)年高二上學(xué)期1月期末質(zhì)量檢測(cè)數(shù)學(xué)試題 附答案
- 2024年辦公樓衛(wèi)生管理制度模版(3篇)
- 保險(xiǎn)公司2024年工作總結(jié)(34篇)
- 2024年01月22503學(xué)前兒童健康教育活動(dòng)指導(dǎo)期末試題答案
- 湖北省荊州市八縣市2023-2024學(xué)年高一上學(xué)期1月期末考試 化學(xué) 含解析
- 2024年世界職業(yè)院校技能大賽中職組“嬰幼兒保育組”賽項(xiàng)考試題庫-上(單選題)
- 期末測(cè)評(píng)(基礎(chǔ)卷二)-2024-2025學(xué)年一年級(jí)上冊(cè)數(shù)學(xué)人教版
- 深圳大學(xué)《數(shù)值計(jì)算方法》2021-2022學(xué)年第一學(xué)期期末試卷
- 服裝廠安全培訓(xùn)
- 民法債權(quán)法學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年9月時(shí)政題庫(附答案)
評(píng)論
0/150
提交評(píng)論