2023-2024學年湖北省普通高中協(xié)作體高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2023-2024學年湖北省普通高中協(xié)作體高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2023-2024學年湖北省普通高中協(xié)作體高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2023-2024學年湖北省普通高中協(xié)作體高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2023-2024學年湖北省普通高中協(xié)作體高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖北省普通高中協(xié)作體高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.“且”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.命題“,”的否定為()A., B.,C., D.,4.已知x是上的一個隨機的實數(shù),則使x滿足的概率為()A. B.C. D.5.一動圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線6.已知向量,,則以下說法不正確的是()A. B.C. D.7.設正方體的棱長為,則點到平面的距離是()A. B.C. D.8.某手機上網套餐資費:每月流量500M以下(包含500M),按20元計費;超過500M,但沒超過1000M(包含1000M)時,超出部分按0.15元/M計費;超過1000M時,超出部分按0.2元/M計費,流量消費累計的總流量達到封頂值(15GB)則暫停當月上網服務.若小明使用該上網套餐一個月的費用是100元,則他的上網流量是()A.800M B.900MC.1025M D.1250M9.設函數(shù)在定義域內可導,的圖象如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.10.若雙曲線一條漸近線被圓所截得的弦長為,則雙曲線的離心率是()A. B.C. D.11.已知、分別是雙曲線的左、右焦點,為一條漸近線上的一點,且,則的面積為()A. B.C. D.112.直線且的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線經過點,則__________.14.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現(xiàn)在兩人各射擊一次,中靶至少一次就算完成目標,則完成目標的概率為_____________15.定義點到曲線的距離為該點與曲線上所有點之間距離的最小值,則點到曲線距離為___________.16.若,,三點共線,則m的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設等差數(shù)列的前項和為,已知.(1)求數(shù)列的通項公式;(2)當為何值時,最大,并求的最大值.18.(12分)動點與定點的距離和它到定直線的距離的比是,記動點M的軌跡為曲線C.(1)求曲線C的方程;(2)已知過點的直線與曲線C相交于兩點,,請問點P能否為線段的中點,并說明理由.19.(12分)已知點,.(1)求以為直徑的圓的方程;(2)若直線被圓截得的弦長為,求值20.(12分)已知橢圓:的長軸長是短軸長的倍,且經過點.(1)求的標準方程;(2)的右頂點為,過右焦點的直線與交于不同的兩點,,求面積的最大值.21.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍22.(10分)已知雙曲線的一條漸近線方程為,且雙曲線C過點.(1)求雙曲線C的標準方程;(2)過點M的直線與雙曲線C的左右支分別交于A、B兩點,是否存在直線AB,使得成立,若存在,求出直線AB的方程;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】因但2、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當且時,成立,反過來,當時,例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點睛】本題考查充分不必要條件的判斷,重點考查基本判斷方法,屬于基礎題型.3、A【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A4、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.5、C【解析】設動圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關系式,化簡,再根據圓錐曲線的定義,可得到動圓圓心軌跡.【詳解】設動圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據圓與圓相切,則,,兩式相減得,根據定義可得動圓圓心軌跡為雙曲線的一支.故選:C【點睛】本題考查了兩圓的位置關系,圓錐曲線的定義,屬于基礎題.6、C【解析】可根據已知的和的坐標,通過計算向量數(shù)量積、向量的模,即可做出判斷.【詳解】因為向量,,所以,故,所以選項A正確;,,所以,故選項B正確;,所以,故選項C錯誤;,所以,,故,所以選項D正確.故選:C.7、D【解析】建立空間直角坐標系,根據空間向量所學點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設平面的法向量,所以,,即,設,所以,,即,設點到平面的距離為,所以,故選:D.8、C【解析】根據已知條件列方程,化簡求得小明的上網流量.【詳解】顯然小明上網流量超過了1000M但遠遠沒達到封頂值,假設超出部分為M,由得.故選:C9、D【解析】根據的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數(shù)圖象的識別,此類問題應根據原函數(shù)的單調性來考慮導函數(shù)的符號與零點情況,本題屬于基礎題.10、A【解析】根據(為弦長,為圓半徑,為圓心到直線的距離),求解出的關系式,結合求解出離心率的值.【詳解】取的一條漸近線,因為(為弦長,為圓半徑,為圓心到直線的距離),其中,所以,所以,所以,所以,所以,故選:A.【點睛】關鍵點點睛:解答本題的關鍵是利用幾何法表示出圓的半徑、圓心到直線的距離、半弦長之間的關系.11、A【解析】先表示出漸近線方程,設出點坐標,利用,解出點坐標,再按照面積公式求解即可.【詳解】由題意知,雙曲線漸近線方程為,不妨設在上,設,由得,解得,的面積為.故選:A.12、C【解析】由直線方程可知其斜率,根據斜率和傾斜角關系可得結果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】將點代入拋物線方程即可得出答案.【詳解】解:因為拋物線經過點,所以,即.故答案為:2.14、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標的概率為.故答案為:15、2【解析】設出曲線上任意一點,利用兩點間距離公式表達出,利用基本不等式求出最小值.【詳解】當時,顯然不成立,故,此時,設曲線任意一點,則,其中,當且僅當,即時等號成立,此時即為最小值.故答案為:216、【解析】根據三點共線與斜率的關系即可得出【詳解】由,,三點共線,可知所在的直線與所在的直線平行,又,由已知可得,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)n為6或7;126【解析】(1)設等差數(shù)列的公差為d,利用等差數(shù)列的通項公式求解;(2)由,利用二次函數(shù)的性質求解.【小問1詳解】解:設等差數(shù)列的公差為d,因為.所以,解得,所以;【小問2詳解】,當或7時,最大,的最大值是126.18、(1)(2)不能,理由見解析.【解析】(1)利用題中距離之比列出關于動點的方程即可求解;(2)先假設點P能為線段的中點,再利用點差法求出直線的斜率,最后聯(lián)立直線與曲線進行檢驗即可.【小問1詳解】解:動點與定點的距離和它到定直線的距離的比是則等式兩邊平方可得:化簡得曲線C的方程為:【小問2詳解】解:點不能為線段的中點,理由如下:由(1)知,曲線C的方程為:過點的直線斜率為,,因為過點的直線與曲線C相交于兩點,所以,兩式作差并化簡得:①當為的中點時,則,②將②代入①可得:此時過點的直線方程為:將直線方程與曲線C方程聯(lián)立得:,,無解與過點的直線與曲線C相交于兩點矛盾所以點不能為線段的中點【點睛】方法點睛:當圓錐曲線中涉及中點和斜率的問題時,常用點差法進行求解.19、(1).(2)或【解析】(1)根據題意,有A、B的坐標可得線段AB的中點即C的坐標,求出AB的長即可得圓C的半徑,由圓的標準方程即可得答案;(2)根據題意,由直線與圓的位置關系可得點C到直線x﹣my+1=0的距離d,結合點到直線的距離公式可得,解可得m的值,即可得答案【詳解】(1)根據題意,點,,則線段的中點為,即的坐標為;圓是以線段為直徑的圓,則其半徑,圓的方程為.(2)根據題意,若直線被圓截得的弦長為,則點到直線的距離,又由,則有,變形可得:,解可得或【點睛】本題考查直線與圓的位置關系以及弦長的計算,涉及圓的標準方程,屬于基礎題20、(1);(2)【解析】(1)利用已知條件,結合橢圓方程求出,即可得到橢圓方程(2)設出直線方程,聯(lián)立橢圓與直線方程,利用韋達定理,弦長公式,列出三角形的面積,再利用基本不等式轉化求解即可【詳解】(1)解:由題意解得,,所以橢圓的標準方程為(2)點,右焦點,由題意知直線的斜率不為0,故設的方程為,,,聯(lián)立方程得消去,整理得,∴,,,,當且僅當時等號成立,此時:,所以面積的最大值為【點睛】本題考查橢圓的性質和方程的求法,考查聯(lián)立直線方程和橢圓方程消去未知數(shù),運用韋達定理化簡整理和運算能力,屬于中檔題21、(1)(2)【解析】(1)根據橢圓的長軸和離心率,可求得,進而得橢圓方程;(2)先判斷直線斜率為正,然后設出直線方程,和橢圓方程聯(lián)立,整理得根與系數(shù)的關系,利用直線方程求出點S、T的坐標,再根據確定的表達式,將根與系數(shù)的關系式代入化簡,求得結果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當直線l的傾斜角為銳角時,設,設直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點S為;直線的方程是:,同理點T為·所以,因為,所以,所以∵,∴,綜上,所以的范圍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論