版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年吉林省四平市公主嶺市第五高級中學數(shù)學高二上期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與圓相交于兩點,當?shù)拿娣e最大時,的值是()A. B.C. D.2.在各項都為正數(shù)的數(shù)列中,首項為數(shù)列的前項和,且,則()A. B.C. D.3.經(jīng)過點,且被圓所截得的弦最短時的直線的方程為()A. B.C. D.4.已知點與不重合的點A,B共線,若以A,B為圓心,2為半徑的兩圓均過點,則的取值范圍為()A. B.C. D.5.如圖,A,B,C三點不共線,O為平面ABC外一點,且平面ABC中的小方格均為單位正方形,,,則()A.1 B.C.2 D.6.隨機地向兩個標號分別為1與2的格子涂色,涂上紅色或綠色,在已知其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的概率為()A. B.C. D.7.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.8.已知拋物線:的焦點為,為上一點且在第一象限,以為圓心,為半徑的圓交的準線于,兩點,且,,三點共線,則()A.2 B.4C.6 D.89.若函數(shù)在上為單調(diào)增函數(shù),則m的取值范圍()A. B.C. D.10.在平面上有及內(nèi)一點O滿足關系式:即稱為經(jīng)典的“奔馳定理”,若的三邊為a,b,c,現(xiàn)有則O為的()A.外心 B.內(nèi)心C.重心 D.垂心11.在棱長為1的正方體中,是線段上一個動點,則下列結論正確的有()A.不存在點使得異面直線與所成角為90°B.存在點使得異面直線與所成角為45°C.存在點使得二面角的平面角為45°D.當時,平面截正方體所得的截面面積為12.已知橢圓的中心為,一個焦點為,在上,若是正三角形,則的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.寫出一個離心率且焦點在軸上的雙曲線的標準方程________,并寫出該雙曲線的漸近線方程________14.已知數(shù)列的前項和.則數(shù)列的通項公式為_______.15.已知數(shù)列滿足,,則使得成立的n的最小值為__________.16.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(…是自然對數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點的個數(shù).18.(12分)已知四邊形是空間直角坐標系中的一個平行四邊形,且,,(1)求點的坐標;(2)求平行四邊形的面積19.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值20.(12分)男子10米氣步槍比賽規(guī)則如下:在資格賽中,射手在距離靶子10米處,采用立姿,在105分鐘內(nèi)射擊60發(fā)子彈,總環(huán)數(shù)排名前8名的射手進入決賽;在決賽中,每位射手僅射擊10發(fā)子彈.已知甲乙兩名運動員均進入了決賽,資格賽中的環(huán)數(shù)情況整理得下表:環(huán)數(shù)頻數(shù)678910甲2352327乙5502525以各人這60發(fā)子彈環(huán)數(shù)的頻率作為決賽中各發(fā)子彈環(huán)數(shù)發(fā)生的概率,甲乙兩人射擊互不影響(1)求甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)決賽打完第9發(fā)子彈后,甲比乙落后2環(huán),求最終甲能戰(zhàn)勝乙(甲環(huán)數(shù)大于乙環(huán)數(shù))的概率21.(12分)已知橢圓與雙曲線有相同的焦點,且的短軸長為(1)求的方程;(2)若直線與交于P,Q兩點,,且的面積為,求k22.(10分)如圖,在四棱錐中,底面ABCD是邊長為2的正方形,為正三角形,且側(cè)面底面ABCD,(1)求證:平面ACM;(2)求平面MBC與平面DBC的夾角的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用點到直線的距離公式和弦長公式可以求出的面積是關于的一個式子,即可求出答案.【詳解】圓心到直線的距離,弦長為..當,即時,取得最大值.故選:C.2、C【解析】當時,,故可以得到,因為,進而得到,所以是等比數(shù)列,進而求出【詳解】由,得,得,又數(shù)列各項均為正數(shù),且,∴,∴,即∴數(shù)列是首項,公比的等比數(shù)列,其前項和,得,故選:C.3、C【解析】當是弦中點,她能時,弦長最短.由此可得直線斜率,得直線方程【詳解】根據(jù)題意,圓心為,當與直線垂直時,點被圓所截得的弦最短,此時,則直線的斜率,則直線的方程為,變形可得,故選:C.【點睛】本題考查直線與圓相交弦長問題,掌握垂徑定理是求解圓弦長問題的關鍵4、D【解析】由題意可得兩點的坐標滿足圓,然后由圓的性質(zhì)可得當時,弦長最小,當過點時,弦長最長,再根據(jù)向量數(shù)量積的運算律求解即可【詳解】設點,則以A,B為圓心,2為半徑的兩圓方程分別為和,因為兩圓過,所以和,所以兩點的坐標滿足圓,因為點與不重合的點A,B共線,所以為圓的一條弦,所以當弦長最小時,,因為,半徑為2,所以弦長的最小值為,當過點時,弦長最長為4,因為,所以當弦長最小時,的最大值為,當弦長最大時,的最小值為,所以的取值范圍為,故選:D5、B【解析】根據(jù)向量的線性運算,將向量表示為,再根據(jù)向量的數(shù)量積的運算進行計算可得答案,【詳解】因為,所以=,故選:B.6、D【解析】根據(jù)古典概型的概率公式即可得出答案.【詳解】在已知其中一個格子顏色為紅色條件下另一個格子顏色有紅色與綠色兩種情況,其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的情況有1種,所以在已知其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的概率為.故選:D.7、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A8、B【解析】根據(jù),,三點共線,結合點到準線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點共線,∴是圓的直徑,∴,軸,又為的中點,且點到準線的距離為2,∴,由拋物線的定義可得,故選:B.9、B【解析】用函數(shù)單調(diào)性確定參數(shù),使用參數(shù)分離法即可.【詳解】,在上是增函數(shù),即恒成立,;設,;∴時,是增函數(shù);時,是減函數(shù);故時,,∴;故選:B.10、B【解析】利用三角形面積公式,推出點O到三邊距離相等?!驹斀狻坑淈cO到AB、BC、CA的距離分別為,,,,因為,則,即,又因為,所以,所以點P是△ABC的內(nèi)心.故選:B11、D【解析】由正方體的性質(zhì)可將異面直線與所成的角可轉(zhuǎn)化為直線與所成角,而當為的中點時,可得,可判斷A;與或重合時,直線與所成的角最小可判斷B;當與重合時,二面角的平面角最小,通過計算可判斷C;過作,交于,交于點,由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數(shù)據(jù)計算即可判斷D.【詳解】異面直線與所成的角可轉(zhuǎn)化為直線與所成角,當為中點時,,此時與所成的角為90°,所以A錯誤;當與或重合時,直線與所成角最小,為60°,所以B錯誤;當與重合時,二面角的平面角最小,,所以,所以C錯誤;對于D,過作,交于,交于點,因為,所以、分別是、的中點,又,所以,四邊形即為平面截正方體所得的截面,因為,且,所以四邊形是等腰梯形,作交于點,所以,,所以梯形的面積為,所以D正確.故選:D.12、D【解析】根據(jù)是正三角形可得的坐標,代入方程后可求離心率.【詳解】不失一般性,可設橢圓的方程為:,為半焦距,為右焦點,因為且,故,故,,整理得到,故,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結合雙曲線參數(shù)關系寫出一個符合要求的雙曲線方程,進而寫出對應的漸近線方程.【詳解】由題設,可令雙曲線為且,∴,則,故為其中一個標準方程,此時漸近線方程為.故答案為:,(答案不唯一).14、【解析】根據(jù)公式求解即可.【詳解】解:當時,當時,因為也適合此等式,所以.故答案為:15、11【解析】由題設可得,結合等比數(shù)列的定義知從第二項開始是公比為2的等比數(shù)列,進而寫出的通項公式,即可求使成立的最小值n.【詳解】因為,所以,兩式相除得,整理得.因為,故從第二項開始是等比數(shù)列,且公比為2,因為,則,所以,則,由得:,故故答案為:11.16、【解析】建立空間直角坐標系后求相關的向量后再用夾角公式運算即可.【詳解】如圖,以C為坐標原點,所在直線為x,y,z軸,建立空間直角坐標系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)當時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時函數(shù)沒有零點;或時函數(shù)有且只有一個零點;時,函數(shù)有兩個零點.【解析】(1)先對函數(shù)求導,然后分和兩種情況判斷導函數(shù)正負,求其單調(diào)區(qū)間;(2)由,得,構造函數(shù),然后利用導數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,從而可得答案【詳解】(1)因為,所以,當時,恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點,由,得.令,則.或時,,時,,所以在和上都是減函數(shù),在上是增函數(shù),時取極小值,又當時,.所以時,關于的方程無解,或時關于的方程只有一個解,時,關于的方程有兩個不同解.因此,時函數(shù)沒有零點,或時函數(shù)有且只有一個零點,時,函數(shù)有兩個零點.【點睛】關鍵點點睛:此題考查導數(shù)的應用,考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導數(shù)判斷函數(shù)的零點,解題的關鍵是由,得,構造函數(shù),然后利用導數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,考查數(shù)形結合的思想,屬于中檔題18、(1);(2)【解析】(1)由題設可得,結合向量的共線坐標表示求的坐標;(2)向量的坐標運算求邊長,由余弦定理求,進而求其正弦值,再應用三角形面積公式求面積.【小問1詳解】由題設,,令,則,∴,可得,故.【小問2詳解】由(1),,,則,又,則,∴平行四邊形的面積.19、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標原點建立空間直角坐標系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問1詳解】證明:因為平面,平面,平面,所以,且,因為,如圖所示,以為坐標原點建立空間直角坐標系,則,,,,,,,所以,,,所以;【小問2詳解】,設平面的法向量為,則,即,令,有,設平面的法向量為,則,即,令,有,設平面和平面的夾角為,,所以平面和平面的夾角的余弦值為20、(1)(2)【解析】(1)先求出甲運動員打中10環(huán)的概率,從而可求出甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)由于甲比乙落后2環(huán),所以甲要獲勝,則乙6環(huán),甲9環(huán)或10環(huán),或者乙7環(huán),甲10環(huán),再利用獨立事件和互斥事件的概率公式求解即可【小問1詳解】由表中的數(shù)據(jù)可得甲運動員打中10環(huán)的概率為,所以甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率為【小問2詳解】因為甲比乙落后2環(huán),所以甲要獲勝,則乙打中6環(huán),甲打中9環(huán)或10環(huán),或者乙打中7環(huán),甲打中10環(huán),因為由題意可得乙打中6環(huán)的概率和打中7環(huán)的概率均為,甲打中9環(huán)的概率為,打中10環(huán)的概率為,且甲乙兩人射擊互不影響所以最終甲能戰(zhàn)勝乙的概率為21、(1)(2)或k=1.【解析】(1)根據(jù)題意求得雙曲線的焦點即知橢圓焦點,結合橢圓短軸長,可求得橢圓標準方程;(2)將直線方程和橢圓方程聯(lián)立,整理得,從而得到根與系數(shù)的關系式,然后求出弦長以及到直線PQ的距離,進而表示出,由題意得關于k的方程,解得答案.【小問1詳解】雙曲線即,故雙曲線交點坐標為,由此可知橢圓焦點也為,又的短軸長為,故,所以,故橢圓的方程為;【小問2詳解】聯(lián)立,整理得:,其,設,則,所以=,點到直線PQ的距離為,所以=,又的面積為,則=,解得或k=1.22、(1)證明見解析(2)30°【解析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《營銷法規(guī)實務》課件
- 養(yǎng)老院老人入住審批制度
- 養(yǎng)老院緊急救援制度
- 復習統(tǒng)計初步課件
- 2024年專用:20xx境外合資合同3篇
- 救護車掛靠私立醫(yī)院協(xié)議書(2篇)
- 《血透患教》課件
- 2024年環(huán)保材料研發(fā)與生產(chǎn)許可合同
- 2024年民間個人借貸協(xié)議范本集錦一
- 2024年版自駕游活動安全責任合同版B版
- 企業(yè)合同簽訂流程培訓
- 2024年浙江省義烏市繡湖中學八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析
- 北京市海淀區(qū)2023-2024學年四年級上學期期末英語試題
- 獸醫(yī)公共衛(wèi)生學第十六章 獸醫(yī)公共衛(wèi)生監(jiān)督管理概述
- 鄉(xiāng)鎮(zhèn)街道合法性培訓審查
- 國家電網(wǎng)有限公司架空輸電線路無人機作業(yè)管理規(guī)定
- 《舞臺布景設計》課件
- 銀行消保宣傳培訓課件
- 2023年麻醉科年中總結和明年工作計劃
- 幼兒園大班數(shù)學上學期期末考試-試題測試
- 《宣傳片制作》課程標準
評論
0/150
提交評論