版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年吉林省吉林市蛟河市一中數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.812.如圖,過拋物線的焦點的直線與拋物線交于兩點,與其準(zhǔn)線交于點(點位于之間)且于點且,則等于()A. B.C. D.3.已知命題:,;命題:,.則下列命題中為真命題的是()A. B.C. D.4.在平面上有及內(nèi)一點O滿足關(guān)系式:即稱為經(jīng)典的“奔馳定理”,若的三邊為a,b,c,現(xiàn)有則O為的()A.外心 B.內(nèi)心C.重心 D.垂心5.方程與的曲線在同一坐標(biāo)系中的示意圖應(yīng)是()A. B.C. D.6.若,則()A.1 B.0C. D.7.已知雙曲線的離心率為5,則其標(biāo)準(zhǔn)方程為()A. B.C. D.8.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=19.復(fù)數(shù)的共軛復(fù)數(shù)的虛部為()A. B.C. D.10.在數(shù)列中,,則的值為()A. B.C. D.以上都不對11.若函數(shù)在上為單調(diào)減函數(shù),則的取值范圍()A. B.C. D.12.設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.如圖,棱長為1的正方體,點沿正方形按的方向作勻速運動,點沿正方形按的方向以同樣的速度作勻速運動,且點分別從點A與點同時出發(fā),則的中點的軌跡所圍成圖形的面積大小是________.14.已知函數(shù)的單調(diào)遞減區(qū)間是,則的值為______.15.同時擲兩枚骰子,則點數(shù)和為7的概率是__________.16.從10名大學(xué)畢業(yè)生中選3個人擔(dān)任村主任助理,則甲、乙至少有1人入選,而丙沒有入選不同選法的種數(shù)為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,且,(1)求的通項公式;(2)求的最小值18.(12分)已知數(shù)列的前n項和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設(shè),數(shù)列的前n項和為,求證:.19.(12分)已知橢圓C:的左、右焦點分別為F1,F(xiàn)2,離心率為,橢圓C上點M滿足(1)求橢圓C的標(biāo)準(zhǔn)方程:(2)若過坐標(biāo)原點的直線l交橢圓C于P,Q兩點,求線段PQ長為時直線l的方程20.(12分)已知函數(shù),求函數(shù)在上的最大值與最小值.21.(12分)已知數(shù)列的前n項和為,且,,數(shù)列滿足:,,,.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前n項和;(3)若不等式對任意恒成立,求實數(shù)k的取值范圍22.(10分)設(shè)數(shù)列的前項和為,已知,且(1)證明:;(2)求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.2、B【解析】由題可得,然后結(jié)合條件可得,即求.【詳解】設(shè)于點,準(zhǔn)線交軸于點G,則,又,∴,又于點且,∴BE∥AD,∴,即,∴,∴等于.故選:B.3、C【解析】利用基本不等式判斷命題的真假,由不等式性質(zhì)判斷命題的真假,進而確定它們所構(gòu)成的復(fù)合命題的真假即可.【詳解】由,當(dāng)且僅當(dāng)時等號成立,故不存在使,所以命題為假命題,而命題為真命題,則為真,為假,故為假,為假,為真,為假.故選:C4、B【解析】利用三角形面積公式,推出點O到三邊距離相等?!驹斀狻坑淈cO到AB、BC、CA的距離分別為,,,,因為,則,即,又因為,所以,所以點P是△ABC的內(nèi)心.故選:B5、A【解析】方程即,表示拋物線,方程表示橢圓或雙曲線,當(dāng)和同號時,拋物線開口向左,方程表示焦點在軸的橢圓,無符合條件的選項;當(dāng)和異號時,拋物線開口向右,方程表示雙曲線,本題選擇A選項.6、C【解析】由結(jié)合二項式定理可得出,利用二項式系數(shù)和公式可求得的值.【詳解】,當(dāng)且時,,因此,.故選:C.【點睛】關(guān)鍵點睛:本題考查二項式系數(shù)和的計算,解題的關(guān)鍵是熟悉二項式系數(shù)和公式,考查學(xué)生的轉(zhuǎn)化能力與計算能力,屬于基礎(chǔ)題.7、D【解析】雙曲線離心率公式和a、b、c的關(guān)系即可求得m,從而得到雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.8、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.9、B【解析】先根據(jù)復(fù)數(shù)除法與加法運算求解得,再求共軛復(fù)數(shù)及其虛部.【詳解】解:,所以其共軛復(fù)數(shù)為,其虛部為故選:B10、C【解析】由數(shù)列的遞推公式可先求數(shù)列的前幾項,從而發(fā)現(xiàn)數(shù)列的周期性的特點,進而可求.【詳解】解:,數(shù)列是以3為周期的數(shù)列故選:【點睛】本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的項,解題的關(guān)鍵是由遞推關(guān)系發(fā)現(xiàn)數(shù)列的周期性的特點,屬于基礎(chǔ)題.11、A【解析】分析可知對任意的恒成立,利用參變量分離法結(jié)合二次函數(shù)的基本性質(zhì)可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,則,當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞減,所以,,故.故選:A.12、D【解析】當(dāng)時,不是遞增數(shù)列;當(dāng)且時,是遞增數(shù)列,但是不成立,所以選D.考點:等比數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出符合要求的圖形,觀察得到軌跡是菱形,并進行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進行證明:菱形EFGC的周界即為動線段PQ的中點H的軌跡,首先證明:如果點H是動線段PQ的中點,那么點H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個定角的兩邊上,不失一般性,設(shè)P從B到C,而Q同時從到C,由于速度相同,所以PQ必平行于,故PQ的中點H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設(shè)P從A到B,同時Q從到,由于速度相同,則,由于H為PQ的中點,連接并延長,交底面ABCD于點T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點一定在菱形EFGC的周界上;下面證明:如果點H在菱形EFGC的周界上,則點H必定是符合條件的線段的中點.也分兩種情況進行證明:(1)H在CG或CE上,過點H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質(zhì)可得:PH=QH,即H是PQ的中點,同時可證:BP=(或BQ=DP),因此P、Q符合題設(shè)條件(2)H在EF或FG上,不失一般性,設(shè)H在FG上,連接并延長,交平面AC于點T,顯然T在AC上,過T作TP∥CB于點P,則TP∥,在平面上,連接PH并延長,交于點Q,在三角形中,G是的中點,∥AC,則H是的中點,于是,從而有,又因為TP∥CB,,所以,從而,因此P,Q符合題設(shè)條件.由(1)(2),如果H是菱形EFGC周界上的任一點,則H必是符合題設(shè)條件的動線段PQ的中點,證畢.因為四邊形為菱形,其中,所以邊長為且,為等邊三角形,,所以面積.故答案為:【點睛】對于立體幾何軌跡問題,要畫出圖形,并要善于觀察,利用所學(xué)的立體幾何方面的知識,大膽猜測,小心驗證,對于多種情況的,要畫出相應(yīng)的圖形,注意分類討論.14、【解析】先求出,由題設(shè)易知是的解集,利用根與系數(shù)關(guān)系求m、n,進而求的值.【詳解】由題設(shè),,由單調(diào)遞減區(qū)間是,∴的解集為,則是的解集,∴,可得,故.故答案為:15、【解析】利用古典概型的概率計算公式即得.【詳解】依題意,記拋擲兩顆骰子向上的點數(shù)分別為,,則可得到數(shù)組共有組,其中滿足的組數(shù)共有6組,分別為,,,,,,因此所求的概率等于.故答案為:.16、49【解析】丙沒有入選,相當(dāng)于從9個人中選3人,分為兩種情況:甲乙兩人只有一人入選;甲乙兩人都入選,分別求出每種情況的選法數(shù),再利用分類加法計數(shù)原理即可得解.【詳解】丙沒有入選,把丙去掉,相當(dāng)于從9個人中選3人,甲、乙至少有1人入選,分為兩種情況:甲乙兩人只有一人入選;甲乙兩人都入選.甲乙兩人只有一人入選,選法有種;甲乙兩人都入選,選法有種.所以,滿足題意的選法共有種.故答案為:49.【點睛】本題考查組合的應(yīng)用,其中涉及到分類加法計數(shù)原理,屬于中檔題.一些常見類型的排列組合問題的解法:(1)特殊元素、特殊位置優(yōu)先法元素優(yōu)先法:先考慮有限制條件的元素的要求,再考慮其他元素;位置優(yōu)先法:先考慮有限制條件的位置的要求,再考慮其他位置;(2)分類分步法:對于較復(fù)雜的排列組合問題,常需要分類討論或分步計算,一定要做到分類明確,層次清楚,不重不漏;(3)間接法(排除法),從總體中排除不符合條件的方法數(shù),這是一種間接解題的方法;(4)捆綁法:某些元素必相鄰的排列,可以先將相鄰的元素“捆成一個”元素,與其它元素進行排列,然后再給那“一捆元素”內(nèi)部排列;(5)插空法:某些元素不相鄰的排列,可以先排其它元素,再讓不相鄰的元素插空;(6)去序法或倍縮法;(7)插板法:個相同元素,分成組,每組至少一個的分組問題.把個元素排成一排,從個空中選個空,各插一個隔板,有;(8)分組、分配法:有等分、不等分、部分等分之別.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由可求得的值,由可求得數(shù)列的通項公式;(2)求得,利用二次函數(shù)的基本性質(zhì)可求得的最小值.【小問1詳解】解:由題意可得,解得,所以,.當(dāng)時,,當(dāng)時,,也滿足,故對任意的,.【小問2詳解】解:,所以,當(dāng)或時,取得最小值,且最小值為.18、(1)證明見解析;(2)證明見解析.【解析】(1)應(yīng)用的關(guān)系,結(jié)合構(gòu)造法可得,根據(jù)已知條件及等比數(shù)列的定義即可證結(jié)論.(2)由(1)得,再應(yīng)用錯位相減法求,即可證結(jié)論.【小問1詳解】證明:對任意的,,,時,,解得,時,因為,,兩式相減可得:,即有,∴,又,則,因為,,所以,對任意的,,所以,因此,是首項和公比均為3的等比數(shù)列【小問2詳解】由(1)得:,則,,,兩式相減得:,化簡可得:,又,∴.19、(1)(2)【解析】(1)依題意可得,即可求出、,即可求出橢圓方程;(2)首先求出直線斜率不存在時弦顯然可得直線的斜率存在,設(shè)直線方程為、、,聯(lián)立直線與橢圓方程,消元列出韋達定理,再根據(jù)弦長公式得到方程,求出,即可得解;【小問1詳解】解:依題意,解得,所以橢圓方程為;【小問2詳解】解:當(dāng)直線的斜率不存在時,直線的方程為,此時,不符合題意;所以直線的斜率存在,設(shè)直線方程為,則,消元整理得,設(shè),,則,,所以,即,解得,所以直線的方程為;20、最大值為,最小值為【解析】利用導(dǎo)數(shù)可求得的單調(diào)性,進而可得極值,比較極值和端點值的大小即可求解.【詳解】由可得:,則當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,,又因為,,所以,綜上所述:函數(shù)在上的最大值為,最小值為.21、(1),;(2);(3).【解析】(1)由可得數(shù)列是等比數(shù)列,即可求得,由得數(shù)列是等差數(shù)列,即可求得.(2)由(1)可得,再利用錯位相減法求和即得.(3)將問題等價轉(zhuǎn)化為對任意恒成立,構(gòu)造數(shù)列并判斷其單調(diào)性,即可求解作答.【小問1詳解】數(shù)列的前項和為,,,當(dāng)時,,則,而當(dāng)時,,即得,因此,數(shù)列是以1為首項,3為公比的等比數(shù)列,則,數(shù)列中,,,則數(shù)列是等差數(shù)列,而,,即有公差,則,所以數(shù)列,的通項公式分別是:,.【小問2詳解】由(1)知,,則,則有,兩式相減得:,從而得,所以數(shù)列的前n項和.【小問3詳解】由(1)知,,依題意得對任意恒成立,設(shè),則,當(dāng),,為單調(diào)遞減數(shù)列,當(dāng),,為單調(diào)遞增數(shù)列,顯然有,則當(dāng)時,取得最大值,即最大值是,因此,,所以實數(shù)k取值范圍是.【點睛】思路點睛:一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前n項和時,可采用錯位相減法求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解22、(1)證明見解析;(2)【解析】(1)當(dāng)時,由題可得,,兩式子相減可得,即,然后驗證當(dāng)n=1時,命題成立即可;(2)通過求解數(shù)列的奇數(shù)項與偶數(shù)項的和即可得到其對應(yīng)前n項和的通項公式.【詳解】(1)由條件,對任意,有,因而對任意,有,兩式相減,得,即,又,所以,故對一切,(2)由(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 濱州醫(yī)學(xué)院《德育原理D》2023-2024學(xué)年第一學(xué)期期末試卷
- 畢節(jié)工業(yè)職業(yè)技術(shù)學(xué)院《外貿(mào)函電》2023-2024學(xué)年第一學(xué)期期末試卷
- 畢節(jié)工業(yè)職業(yè)技術(shù)學(xué)院《場地設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度二零二五年度mcn與航空公司合作會員積分兌換合同3篇
- 二零二五年加油站安全防護用品銷售合同范本3篇
- 個人商鋪出租合同
- 二零二五年度10kv配電站施工后期維護合同3篇
- 產(chǎn)品銷售代理加工熟食品合同協(xié)議范本模板
- 輪扣式腳手架租賃合同書
- 北京政法職業(yè)學(xué)院《舞蹈身體語言學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 電網(wǎng)行業(yè)工作匯報模板22
- 2024年度跨境電商平臺承包經(jīng)營合同3篇
- 2025年上半年人民日報社招聘應(yīng)屆高校畢業(yè)生85人筆試重點基礎(chǔ)提升(共500題)附帶答案詳解
- 山東省臨沂市2023-2024學(xué)年高二上學(xué)期期末考試生物試題 含答案
- 辦公樓電氣改造施工方案
- 浙江省衢州市2023-2024學(xué)年高一上學(xué)期期末英語試題(含答案)3
- 上學(xué)期高二期末語文試卷(含答案)
- 超齡員工用工免責(zé)協(xié)議書
- 《雁門太守行》課件
- 低血糖休克護理業(yè)務(wù)學(xué)習(xí)
- 農(nóng)村養(yǎng)牛合作合同范本
評論
0/150
提交評論