2023-2024學(xué)年綿陽市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁
2023-2024學(xué)年綿陽市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁
2023-2024學(xué)年綿陽市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁
2023-2024學(xué)年綿陽市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁
2023-2024學(xué)年綿陽市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年綿陽市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.公元前6世紀(jì),古希臘的畢達(dá)哥拉斯學(xué)派研究發(fā)現(xiàn)了黃金分割,簡(jiǎn)稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.2.過點(diǎn)且與直線平行的直線方程是()A. B.C. D.3.若過點(diǎn)(2,1)的圓與兩坐標(biāo)軸都相切,則圓心到直線的距離為()A. B.C. D.4.如圖,空間四邊形中,,,,且,,則()A. B.C. D.5.已知函數(shù)有兩個(gè)極值點(diǎn)m,n,且,則的最大值為()A. B.C. D.6.某商場(chǎng)為了解銷售活動(dòng)中某商品銷售量與活動(dòng)時(shí)間之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某次銷售活動(dòng)中的商品銷售量與活動(dòng)時(shí)間,并制作了下表:活動(dòng)時(shí)間銷售量由表中數(shù)據(jù)可知,銷售量與活動(dòng)時(shí)間之間具有線性相關(guān)關(guān)系,算得線性回歸方程為,據(jù)此模型預(yù)測(cè)當(dāng)時(shí),的值為()A B.C. D.7.已知,則下列說法錯(cuò)誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是8.某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是A.3 B.4C.5 D.69.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.雙曲線的光學(xué)性質(zhì)如下:如圖1,從雙曲線右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長(zhǎng)線經(jīng)過左焦點(diǎn).我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個(gè)光學(xué)性質(zhì).某“雙曲線燈”的軸截面是雙曲線一部分,如圖2,其方程為,分別為其左、右焦點(diǎn),若從右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線上的點(diǎn)A和點(diǎn)B反射后(,A,B在同一直線上),滿足,則該雙曲線的離心率的平方為()A. B.C. D.11.如圖所示,在三棱錐中,E,F(xiàn)分別是AB,BC的中點(diǎn),則等于()A. B.C. D.12.已知直線l和拋物線交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),且,交AB于點(diǎn)D,點(diǎn)D的坐標(biāo)為,則p的值為()A. B.1C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中項(xiàng)的系數(shù)為______.(結(jié)果用數(shù)值表示)14.?dāng)?shù)列的前項(xiàng)和為,若,則=____________.15.如圖,在五面體中,//,,,四邊形為平行四邊形,平面,,則直線到平面距離為_________16.定義在上的函數(shù)滿足:有成立且,則不等式的解集為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某情報(bào)站有.五種互不相同的密碼,每周使用其中的一種密碼,且每周都是從上周末使用的四種密碼中等可能地隨機(jī)選用一種.設(shè)第一周使用密碼,表示第周使用密碼的概率(1)求;(2)求證:為等比數(shù)列,并求的表達(dá)式18.(12分)在等差數(shù)列中,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求.19.(12分)設(shè)點(diǎn)是拋物線上異于原點(diǎn)O的一點(diǎn),過點(diǎn)P作斜率為、的兩條直線分別交于、兩點(diǎn)(P、A、B三點(diǎn)互不相同)(1)已知點(diǎn),求的最小值;(2)若,直線AB的斜率是,求的值;(3)若,當(dāng)時(shí),B點(diǎn)的縱坐標(biāo)的取值范圍20.(12分)已知橢圓C:經(jīng)過點(diǎn),且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點(diǎn),都有.若存在,求出r的值,并求此時(shí)△AOB的面積S的取值范圍;若不存在,請(qǐng)說明理由21.(12分)在①,②,③,,成等比數(shù)列這三個(gè)條件中選擇符合題意的兩個(gè)條件,補(bǔ)充在下面的問題中,并求解.已知數(shù)列中,公差不等于的等差數(shù)列滿足_________,求數(shù)列的前項(xiàng)和.22.(10分)已知橢圓的左右焦點(diǎn)分別為,,點(diǎn)在橢圓上,與軸垂直,且(1)求橢圓的方程;(2)若點(diǎn)在橢圓上,且,求的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因?yàn)殡p曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A2、A【解析】由題意設(shè)直線方程為,根據(jù)點(diǎn)在直線上求參數(shù)即可得方程.【詳解】由題設(shè),令直線方程為,所以,可得.所以直線方程為.故選:A.3、B【解析】由題意可知圓心在第一象限,設(shè)圓心的坐標(biāo)為,可得圓的半徑為,寫出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)在圓上,求得實(shí)數(shù)的值,利用點(diǎn)到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點(diǎn)在第一象限,若圓心不在第一象限,則圓與至少與一條坐標(biāo)軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標(biāo)為,則圓的半徑為,圓的標(biāo)準(zhǔn)方程為.由題意可得,可得,解得或,所以圓心的坐標(biāo)為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點(diǎn)睛】本題考查圓心到直線距離的計(jì)算,求出圓的方程是解題的關(guān)鍵,考查計(jì)算能力,屬于中等題.4、C【解析】根據(jù)空間向量的線性運(yùn)算即可求解.【詳解】因?yàn)?,又因?yàn)?,,所?故選:C5、C【解析】對(duì)求導(dǎo)得,得到m,n是兩個(gè)根,由根與系數(shù)的關(guān)系可得m,n的關(guān)系,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求單調(diào)性,進(jìn)而得最值.【詳解】由得:m,n是兩個(gè)根,由根與系數(shù)的關(guān)系得:,故,令記,則,故在上單調(diào)遞減.故選:C6、C【解析】求出樣本中心點(diǎn)的坐標(biāo),代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數(shù)據(jù)可得,,將樣本中心點(diǎn)的坐標(biāo)代入回歸直線方程可得,解得,所以,回歸直線方程為,故當(dāng)時(shí),.故選:C.7、D【解析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項(xiàng)即可判斷作答.【詳解】對(duì)于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對(duì)于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯(cuò)誤;對(duì)于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D8、B【解析】循環(huán)體第一次運(yùn)行后;第二次運(yùn)行后;第三次運(yùn)行后,第四次運(yùn)行后;循環(huán)結(jié)束,輸出值為4,答案選B考點(diǎn):程序框圖的功能9、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時(shí),數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.10、D【解析】設(shè),根據(jù)題意可得,由雙曲線定義得、,進(jìn)而求出(用表示),然后在中,應(yīng)用勾股定理得出關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),則.因?yàn)?,所以,則,則,又因?yàn)?,所以,則,在中,,即,所以.故選:D11、D【解析】根據(jù)向量的線性運(yùn)算公式化簡(jiǎn)可得結(jié)果.【詳解】因?yàn)镋,F(xiàn)分別是AB,AC的中點(diǎn),所以,,所以,故選:D12、B【解析】由垂直關(guān)系得出直線l方程,聯(lián)立直線和拋物線方程,利用韋達(dá)定理以及數(shù)量積公式得出p的值.【詳解】,,即聯(lián)立直線和拋物線方程得設(shè),則解得故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求解出該二項(xiàng)式展開式的通項(xiàng),然后求解出滿足題意的項(xiàng)數(shù)值,帶入通項(xiàng)即可求解出展開式的系數(shù).【詳解】展開式通項(xiàng)為,由題意,令,解得,,所以項(xiàng)的系數(shù)為.故答案為:.14、【解析】利用裂項(xiàng)相消法求和即可.【詳解】解:因?yàn)?,所?故答案為:.15、【解析】利用等價(jià)轉(zhuǎn)化的思想轉(zhuǎn)化為點(diǎn)到面的距離,作,利用線面垂直的判定定理證明平面,然后計(jì)算使用等面積法,可得結(jié)果.【詳解】作如圖由//,平面,平面所以//平面所以直線到平面距離等價(jià)于點(diǎn)到平面距離又平面,平面所以,又,則平面,,所以平面平面,所以又平面,所以平面所以點(diǎn)到平面距離為由,所以又,所以在中,又故答案為:【點(diǎn)睛】本題考查線面垂直的綜合應(yīng)用以及等面積法求高,重點(diǎn)在于使用等價(jià)轉(zhuǎn)換的思想,考驗(yàn)理解能力,分析問題的能力,屬中檔題.16、【解析】由,判斷出函數(shù)的單調(diào)性,利用單調(diào)性解即可【詳解】設(shè),又有成立,函數(shù),即是上的增函數(shù),,即,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,,(2)證明見解析,【解析】(1)根據(jù)題意可得第一周使用A密碼,第二周使用A密碼的概率為0,第三周使用A密碼的概率為,以此類推;(2)根據(jù)題意可知第周從剩下的四種密碼中隨機(jī)選用一種,恰好選到A密碼的概率為,進(jìn)而可得,結(jié)合等比數(shù)列的定義可知為等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式即可求出結(jié)果.【小問1詳解】,,,【小問2詳解】第周使用A密碼,則第周必不使用A密碼(概率為),然后第周從剩下的四種密碼中隨機(jī)選用一種,恰好選到A密碼的概率為故,即故為等比數(shù)列且,公比故,故18、(1)(2)1280【解析】(1)直接利用等差數(shù)列通項(xiàng)公式即可求解;(2)先判斷出數(shù)列單調(diào)性,由,則時(shí),,時(shí),;然后去掉絕對(duì)值,利用等差數(shù)列的前項(xiàng)和公式求解即可.【小問1詳解】設(shè)數(shù)列的公差為,由,可知,∴;【小問2詳解】由(1)知,數(shù)列為單調(diào)遞減數(shù)列,由,則時(shí),,時(shí),;.19、(1);(2)3;(3);【解析】(1)根據(jù)兩點(diǎn)之間的距離公式,結(jié)合點(diǎn)坐標(biāo)滿足拋物線,構(gòu)造關(guān)于的函數(shù)關(guān)系,求其最值即可;(2)根據(jù)題意,求得點(diǎn)的坐標(biāo),設(shè)出的直線方程,聯(lián)立拋物線方程,利用韋達(dá)定理求得點(diǎn)坐標(biāo),同理求得點(diǎn)坐標(biāo),再利用斜率計(jì)算公式求得即可;(3)根據(jù)題意,求得點(diǎn)的坐標(biāo),利用坐標(biāo)轉(zhuǎn)化,求得關(guān)于的一元二次方程,利用其有兩個(gè)不相等的實(shí)數(shù)根,即可求得的取值范圍.【小問1詳解】因?yàn)辄c(diǎn)在拋物線上,故可得,又,當(dāng)且僅當(dāng)時(shí),取得最小值.故的最小值為.【小問2詳解】當(dāng)時(shí),故可得,即點(diǎn)的坐標(biāo)為;則的直線方程為:,聯(lián)立拋物線方程:,可得:,故可得,解得:,又故可得同理可得:,又的斜率,即.故為定值.【小問3詳解】當(dāng)時(shí),可得,此時(shí),因?yàn)閮牲c(diǎn)在拋物線上,故可得,,因?yàn)椋士傻?,整理得:,,因?yàn)槿c(diǎn)不同,故可得,則,即,,此方程可以理解為關(guān)于的一元二次方程,因?yàn)?,故該方程有兩個(gè)不相等的實(shí)數(shù)根,,即,故,則,解得或.故點(diǎn)縱坐標(biāo)的取值范圍為.【點(diǎn)睛】本題考察直線與拋物線相交時(shí)范圍問題,定值問題,解決問題的關(guān)鍵是合理且充分的利用韋達(dá)定理,本題計(jì)算量較大,屬綜合困難題.20、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點(diǎn)列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達(dá)出△AOB的面積,利用基本不等式求出的取值范圍,進(jìn)而求出△AOB面積的取值范圍.【小問1詳解】因?yàn)闄E圓C:的離心率,且過點(diǎn)所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時(shí),設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解所以,即由根與系數(shù)的關(guān)系可得,所以因?yàn)?,所以,即化?jiǎn)得,且,O到直線l的距離所以,又,此時(shí),所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因?yàn)楫?dāng)k≠0時(shí)當(dāng)且僅當(dāng)即時(shí)取等號(hào)又因?yàn)椋裕援?dāng)k=0時(shí),②斜率不存在時(shí),直線與橢圓交于兩點(diǎn)或兩點(diǎn)易知存在圓的方程為⊙O:且綜上,所以【點(diǎn)睛】求解圓錐曲線相關(guān)的三角形或四邊形面積取值范圍問題,需要先設(shè)出變量,表達(dá)出面積,利用基本不等式或者配方,導(dǎo)函數(shù)等求出最值,求出取值范圍,特別注意直線斜率存在和不存在的情況,需要分類討論.21、詳見解析【解析】根據(jù)已知求出的通項(xiàng)公式.當(dāng)①②時(shí),設(shè)數(shù)列公差為,利用賦值法得到與的關(guān)系式,列方程求出與,求出,寫出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選②③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,解出與,寫出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選①③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,發(fā)現(xiàn)無解,則等差數(shù)列不存在,故不合題意.【詳解】解:因?yàn)?,,所以是以為首?xiàng),為公比的等比數(shù)列,所以,選①②時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以,因?yàn)?,所以時(shí),,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.選②③時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以,即,因?yàn)?,,成等比?shù)列,所以,即,化簡(jiǎn)得,因?yàn)?,所以,從而,所以,所以,(i)所以(ii)(i)(ii),得:,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論