2023-2024學年廈門市重點中學高二數(shù)學第一學期期末檢測模擬試題含解析_第1頁
2023-2024學年廈門市重點中學高二數(shù)學第一學期期末檢測模擬試題含解析_第2頁
2023-2024學年廈門市重點中學高二數(shù)學第一學期期末檢測模擬試題含解析_第3頁
2023-2024學年廈門市重點中學高二數(shù)學第一學期期末檢測模擬試題含解析_第4頁
2023-2024學年廈門市重點中學高二數(shù)學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廈門市重點中學高二數(shù)學第一學期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,和分別是雙曲線的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為()A. B.C. D.2.以下命題是真命題的是()A.方差和標準差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量B.若m為數(shù)據(jù)(i=1,2,3,····,2021)的中位數(shù),則C.回歸直線可能不經(jīng)過樣本點的中心D.若“”為假命題,則均為假命題3.已知三角形三個頂點為、、,則邊上的高所在直線的方程為()A. B.C. D.4.若、、為空間三個單位向量,,且與、所成的角均為,則()A.5 B.C. D.5.已知雙曲線,點F為其左焦點,點B,若BF所在直線與雙曲線的其中一條漸近線垂直,則該雙曲線的離心率為()A. B.C. D.6.設雙曲線:的左、右焦點分別為、,P為C上一點,且,,則雙曲線的漸近線方程為()A. B.C. D.7.如圖,在正方體中,點,分別是面對角線與的中點,若,,,則()A. B.C. D.8.如圖①所示,將一邊長為1的正方形沿對角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.9.函數(shù)的定義域為,其導函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.510.已知數(shù)列滿足,,則()A. B.C.1 D.211.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.12.函數(shù)的圖象在點處的切線的傾斜角為()A. B.0C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知,,若,則_________.14.某地區(qū)有3個疫苗接種定點醫(yī)院,現(xiàn)有10名志愿者將被派往這3個醫(yī)院協(xié)助新冠疫苗接種工作,每個醫(yī)院至少需要2名至多需要4名志愿者,則不同的安排方法共有___________種.15.已知函數(shù)(1)若時函數(shù)有三個互不相同的零點,求實數(shù)的取值范圍;(2)若對任意的,不等式在上恒成立,求實數(shù)的取值范圍16.已知球的表面積是,則該球的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{an}的前n項和為Sn,.(1)求數(shù)列{an}通項公式;(2)求數(shù)列的前n項和,求使不等式成立的最大整數(shù)m的值.18.(12分)已知命題p:直線與雙曲線的右支有兩個不同的交點,命題q:直線與直線平行.(1)若,判斷命題“”的真假;(2)若命題“”為真命題,求實數(shù)k的取值范圍.19.(12分)已知為數(shù)列的前項和,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和(3)設,若不等式對一切恒成立,求實數(shù)取值范圍20.(12分)已知橢圓E:的離心率,且右焦點到直線的距離為.(1)求橢圓的標準方程;(2)四邊形的頂點在橢圓上,且對角線,過原點,若,證明:四邊形的面積為定值.21.(12分)某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?(3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.22.(10分)在銳角中,角的對邊分別為,滿足.(1)求;(2)若的面積為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】解:,設F1F2=2c,∵△F2AB是等邊三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故選D2、A【解析】A:根據(jù)方差和標準差的定義進行判斷;B:根據(jù)中位數(shù)的定義判斷;C:根據(jù)回歸直線必過樣本中心點進行判斷;D:根據(jù)“且”命題真假關系進行判斷.【詳解】對于A,方差和標準差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量,故A正確;對于B,若為數(shù)據(jù),2,3,,的中位數(shù),需先將數(shù)據(jù)從小到大排列,此時數(shù)據(jù)里面之間的數(shù)順序可能發(fā)生變化,則為排序后的第1010個數(shù)據(jù)的值,這個數(shù)不一定是原來的,故B錯誤;對于C,回歸直線一定經(jīng)過樣本點的中心,,故C錯誤;對于D,若“”為假命題,則、中至少有一個是假命題,故D錯誤;故選:A3、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.4、C【解析】先求的平方后再求解即可.【詳解】,故,故選:C5、C【解析】設出雙曲線半焦距c,利用斜率坐標公式結合垂直關系列式計算作答.【詳解】設雙曲線半焦距為c,則,直線BF的斜率為,雙曲線的漸近線為:,因直線BF與雙曲線的一條漸近線垂直,則有,即,于是得,而,解得,所以雙曲線的離心率為.故選:C6、B【解析】根據(jù)雙曲線定義結合,求得,在中,利用余弦定理求得之間的關系,即可得出答案.【詳解】解:因為在雙曲線中,因為,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.7、D【解析】由空間向量運算法則得,利用向量的線性運算求出結果.【詳解】因為點,分別是面對角線與的中點,,,,所以故選:D.8、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點在面上的投影為的中點,由俯視圖可以看出C點在面上的投影為的中點,所以其左視圖為如圖所示的等腰直角三角形,直角邊長為,于是左視圖的面積為故選:A.9、C【解析】根據(jù)給定的導函數(shù)的圖象,結合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設導函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側的導數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.10、C【解析】結合遞推關系式依次求得的值.【詳解】因為,,所以,得由,得.故選:C11、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.12、A【解析】求出導函數(shù),計算得切線斜率,由斜率求得傾斜角【詳解】,設傾斜角為,則,,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,,利用向量數(shù)量積的坐標運算可得,然后利用定積分性質可得,原式,最后利用微積分基本定理計算,,利用定積分的幾何意義計算,即可得答案.【詳解】解:因為,,且,所以,解得,所以====.故答案為:.14、22050【解析】先分組,再排列,注意部分平均分組問題,需要除以平均組數(shù)的全排列.【詳解】根據(jù)題意,這10名志愿者的安排方法共有兩類:第一類是2,4,4,第二類是3,3,4.故不同的安排方法共有種.故答案為:2205015、(1)(2)【解析】(1)將函數(shù)有三個互不相同的零點轉化為有三個互不相等的實數(shù)根,令,求導確定單調性求出極值即可求解;(2)求導確定單調性,結合以及得,由得,結合二次函數(shù)單調性求出最小值即可求解.【小問1詳解】當時,.函數(shù)有三個互不相同的零點,即有三個互不相等的實數(shù)根令,則,令得或,在和上均減函數(shù),在上為增函數(shù),極小值為,極大值為,的取值范圍是;【小問2詳解】,且,當或時,;當時,函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為當時,,又,,又,又在上恒成立,即,即當時,恒成立在上單減,故最小值為,的取值范圍是16、【解析】設球的半徑為r,代入表面積公式,可解得,代入體積公式,即可得答案.【詳解】設球的半徑為r,則表面積,解得,所以體積,故答案為:【點睛】本題考查已知球的表面積求體積,關鍵是求出半徑,再進行求解,考查基礎知識掌握程度,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定的遞推公式變形,再構造常數(shù)列求解作答.(2)利用(1)的結論求出,再利用裂項相消法求和,由單調性求出最大整數(shù)m值作答.【小問1詳解】依題意,,當時,,兩式相減得:,即,整理得:,于是得,所以數(shù)列{an}的通項公式是.【小問2詳解】由(1)得,,數(shù)列是遞增數(shù)列,因此,,于是有,則,不等式成立,則,,于是得,所以使不等式成立的最大整數(shù)m的值是505.【點睛】思路點睛:使用裂項法求和時,要注意正負項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質上造成正負相消是此法的根源與目的18、(1)命題“”為真命題(2)【解析】(1)先判斷命題p,命題q的真假,再利用復合命題的真假判斷;(2)根據(jù)命題“”真命題,由p為真命題,q為假命題求解.【小問1詳解】解:對于命題p,易知直線與雙曲線的左、右支各有一個交點,∴命題p為假命題;對于命題q,時,有與,顯然兩條直線垂直,∴命題q為假命題.∴命題“”為真命題.【小問2詳解】∵命題“”為真命題,∴p為真命題,q為假命題.對于命題p,由得,直線與雙曲線的右支有兩個不同的交點,即此方程有兩個不同的正根,∴得.對于命題q,要使命題q為真,則,解得,∴命題q為假命題,即.∴實數(shù)k的取值范圍為.19、(1);(2);(3).【解析】(1)利用的關系,根據(jù)等比數(shù)列的定義求通項公式.(2)由(1)可得,應用裂項相消法求.(3)應用錯位相減法求得,由題設有,討論為奇數(shù)、偶數(shù)求的取值范圍【小問1詳解】當時,,可得,當時,,可得,∴是首項、公比都為的等比數(shù)列,故.【小問2詳解】由(1),,∴.【小問3詳解】由題設,,∴,則,∴,由對一切恒成立,令,則,∴數(shù)列單調遞減,∴當為奇數(shù),恒成立且在上遞減,則,當為偶數(shù),恒成立且在上遞增,則,綜上,.20、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件列出關于a、b、c的方程組求解即可;(2)設,代入,利用韋達定理,通過,結合,轉化求解即可【小問1詳解】【小問2詳解】設,設,代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴為定值21、(1)公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)該公司平均每天的利潤有1000元.(3).【解析】(1)對于平均數(shù),運用平均數(shù)的公式即可;由于中位數(shù)將頻率分布直方圖分成面積相等的兩部分,先確定中位數(shù)位于哪一組,然后建立關于中位數(shù)的方程即可求出.(2)利用每天的總收入減去工資的支出,即可得到公司每天的利潤.(3)該為古典概型,根據(jù)題意分別確定總的基本事件個數(shù),以及事件“快遞費為45元”包括的基本事件個數(shù),即可求出概率.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;或:由圖可知每天攬50、150、250、350、450件的天數(shù)分別為6、6、30、12、6,所以每天包裹數(shù)量的平均數(shù)為設中位數(shù)為x,易知,則,解得x=260.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)由(1)可知平均每天的攬件數(shù)為260,利潤為(元),所以該公司平均每天的利潤有1000元(3)設四件禮物分為二個包

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論