2023-2024學(xué)年江西省宜春市高二上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
2023-2024學(xué)年江西省宜春市高二上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
2023-2024學(xué)年江西省宜春市高二上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
2023-2024學(xué)年江西省宜春市高二上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
2023-2024學(xué)年江西省宜春市高二上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江西省宜春市高二上數(shù)學(xué)期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時認(rèn)識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)f(x)的導(dǎo)函數(shù),若,對,且.總有,則下列選項(xiàng)正確的是()A. B.C. D.2.已知數(shù)列滿足,且,則的值為()A.3 B.C. D.3.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.已知拋物線,過其焦點(diǎn)且斜率為1的直線交拋物線于A,B兩點(diǎn),若線段AB的中點(diǎn)的橫坐標(biāo)為3,則該拋物線的準(zhǔn)線方程為()A. B.C. D.5.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離6.在等比數(shù)列中,,,則()A. B.或C. D.或7.已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)A是橢圓短軸的一個頂點(diǎn),且,則橢圓的離心率()A. B.C. D.8.如圖,空間四邊形OABC中,,,,點(diǎn)M在上,且滿足,點(diǎn)N為BC的中點(diǎn),則()A. B.C. D.9.設(shè)是定義在R上的函數(shù),其導(dǎo)函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷10.已知空間三點(diǎn),,在一條直線上,則實(shí)數(shù)的值是()A.2 B.4C.-4 D.-211.工業(yè)生產(chǎn)者出廠價格指數(shù)(PRoduceRPRiceIndexfoRIndustRialPRoducts,簡稱PPI)是反映工業(yè)企業(yè)產(chǎn)品第一次出售時的出廠價格的變化趨勢和變動幅度,是反映某一時期生產(chǎn)領(lǐng)域價格變動情況的重要經(jīng)濟(jì)指標(biāo),也是制定有關(guān)經(jīng)濟(jì)政策和國民經(jīng)濟(jì)核算的重要依據(jù).根據(jù)下面提供的我國2020年1月—2021年11月的工業(yè)生產(chǎn)者出廠價格指數(shù)的月度同比(將上一年同月作為基期進(jìn)行對比的價格指數(shù))和月度環(huán)比(將上月作為基期進(jìn)行對比的價格指數(shù))漲跌情況的折線圖判斷,以下結(jié)論正確的()A.2020年各月的PPI在逐月增大B.2020年各月的PPI均高于2019年同期水平C.2021年1月—11月各月的PPI在逐月減小D.2021年1月—11月各月的PPI均高于2020年同期水平12.已知橢圓和雙曲線有共同焦點(diǎn),是它們一個交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.,若2是與的等比中項(xiàng),則的最小值為___________.14.某高中高二年級學(xué)生在學(xué)習(xí)完成數(shù)學(xué)選擇性必修一后進(jìn)行了一次測試,總分為100分.現(xiàn)用分層隨機(jī)抽樣方法從學(xué)生的數(shù)學(xué)成績中抽取一個樣本量為40的樣本,再將40個成績樣本數(shù)據(jù)分為6組:40,50),50,60),60,70),70,80),80,90),90,100,繪制得到如圖所示的頻率分布直方圖.(1)從所給的頻率分布直方圖中估計(jì)成績樣本數(shù)據(jù)眾數(shù),平均數(shù),中位數(shù);(2)在區(qū)間40,50)和90,100內(nèi)的兩組學(xué)生成績樣本數(shù)據(jù)中,隨機(jī)抽取兩個進(jìn)調(diào)查,求調(diào)查對象來自不同分組的概率.15.展開式中的系數(shù)是___________.16.已知函數(shù),,則曲線在處的切線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率,過橢圓C的焦點(diǎn)且垂直于x軸的直線截橢圓所得到的線段的長度為1(1)求橢圓C的方程;(2)直線交橢圓C于A、B兩點(diǎn),若y軸上存在點(diǎn)P,使得是以AB為斜邊的等腰直角三角形,求的面積的取值范圍18.(12分)設(shè)數(shù)列的前n項(xiàng)和為,且,數(shù)列(1)求和的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,證明:19.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點(diǎn).(1)求證:平面;(2)求證:平面.20.(12分)某高中招聘教師,首先要對應(yīng)聘者的簡歷進(jìn)行篩選,簡歷達(dá)標(biāo)者進(jìn)入面試,面試環(huán)節(jié)應(yīng)聘者要回答3道題,第一題為教育心理學(xué)知識,答對得4分,答錯得0分,后兩題為學(xué)科專業(yè)知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應(yīng)聘,他們中僅有3人的簡歷達(dá)標(biāo),若從這5人中隨機(jī)抽取3人,求這3人中恰有2人簡歷達(dá)標(biāo)的概率;(2)某進(jìn)入面試的應(yīng)聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應(yīng)聘者的面試成績X的分布列及數(shù)學(xué)期望21.(12分)同時拋擲兩顆骰子,觀察向上點(diǎn)數(shù).(1)試表示“出現(xiàn)兩個1點(diǎn)”這個事件相應(yīng)的樣本空間的子集;(2)求出現(xiàn)兩個1點(diǎn)”的概率;(3)求“點(diǎn)數(shù)之和為7”的概率.22.(10分)已知是函數(shù)的一個極值點(diǎn).(1)求實(shí)數(shù)的值;(2)求函數(shù)在區(qū)間上的最大值和最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項(xiàng).【詳解】由,得在上單調(diào)遞增,因?yàn)?,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點(diǎn)處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點(diǎn)與點(diǎn)連線的斜率,由圖可知,所以C正確,同理,由圖可知,故D不正確.故選:C2、B【解析】根據(jù)題意,依次求出,觀察規(guī)律,進(jìn)而求出數(shù)列的周期,然后通過周期性求得答案.【詳解】因?yàn)閿?shù)列滿足,,所以,所以,,,可知數(shù)列具有周期性,周期為3,,所以.故選:B3、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當(dāng)時,利用正弦函數(shù)的單調(diào)性知;當(dāng)時,或.綜上可知“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎(chǔ)題型.4、B【解析】設(shè),進(jìn)而根據(jù)題意,結(jié)合中點(diǎn)弦的問題得,進(jìn)而再求解準(zhǔn)線方程即可.【詳解】解:根據(jù)題意,設(shè),所以①,②,所以,①②得:,即,因?yàn)橹本€AB的斜率為1,線段AB的中點(diǎn)的橫坐標(biāo)為3,所以,即,所以拋物線,準(zhǔn)線方程為.故選:B5、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進(jìn)行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因?yàn)閮蓤A的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A6、C【解析】計(jì)算出等比數(shù)列的公比,即可求得的值.【詳解】設(shè)等比數(shù)列的公比為,則,則,所以,.故選:C.7、D【解析】依題意,不妨設(shè)點(diǎn)A的坐標(biāo)為,在中,由余弦定理得,再根據(jù)離心率公式計(jì)算即可.【詳解】設(shè)橢圓的焦距為,則橢圓的左焦點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,依題意,不妨設(shè)點(diǎn)A的坐標(biāo)為,在中,由余弦定理得:,,,,解得.故選:D.【點(diǎn)睛】本題考查橢圓幾何性質(zhì),在中,利用余弦定理求得是關(guān)鍵,屬于中檔題.8、B【解析】由空間向量的線性運(yùn)算求解【詳解】由題意,又,,,∴,故選:B9、A【解析】首先構(gòu)造函數(shù),再利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可判斷選項(xiàng).【詳解】設(shè),,所以函數(shù)在單調(diào)遞增,即,所以,那么,即.故選:A10、C【解析】根據(jù)三點(diǎn)在一條直線上,利用向量共線原理,解出實(shí)數(shù)的值.【詳解】解:因?yàn)榭臻g三點(diǎn),,在一條直線上,所以,故.所以.故選:C.【點(diǎn)睛】本題主要考查向量共線原理,屬于基礎(chǔ)題.11、D【解析】根據(jù)折線圖中同比、環(huán)比的正負(fù)情況,結(jié)合各選項(xiàng)的描述判斷正誤.【詳解】A:2020年前5個月PPI在逐月減小,錯誤;B:2020年各月同比為負(fù)值,即低于2019年同期水平,錯誤;C:2021年1月—11月各月的PPI環(huán)比為正值,即逐月增大,錯誤;D:2021年1月—11月各月的PPI同比為正值,即高于2020年同期水平,正確.故選:D.12、D【解析】設(shè)橢圓長半軸長為a1,雙曲線的半實(shí)軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長半軸長為a1,雙曲線的半實(shí)軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點(diǎn)睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點(diǎn)三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)等比中項(xiàng)列方程,結(jié)合基本不等式求得的最小值.【詳解】由題可得,則,當(dāng)且僅當(dāng)時等號成立.故答案為:14、(1)眾數(shù);平均數(shù),中位數(shù).(2).【解析】(1)按“眾數(shù),平均數(shù),中位數(shù)”的公式求解.(2)由頻率分布直方圖得到各區(qū)間的頻率,再用古典概型求解.【小問1詳解】眾數(shù)取頻率分布直方圖中最高矩形對應(yīng)區(qū)間的中點(diǎn)75;平均數(shù);因?yàn)?,所以中位?shù)在區(qū)間上,且中位數(shù)【小問2詳解】由頻率分布直方圖得出在區(qū)間40,50)和90,100內(nèi)的成績樣本數(shù)據(jù)分別有4個和2個,從6個樣本選2個共有個結(jié)果,記事件A=“調(diào)查對象來自不同分組”,結(jié)果有所以.15、【解析】根據(jù)二項(xiàng)展開式的通項(xiàng)公式,可知展開式中含的項(xiàng),以及展開式中含的項(xiàng),再根據(jù)組合數(shù)的運(yùn)算即可求出結(jié)果.【詳解】解:由題意可得,展開式中含的項(xiàng)為,而展開式中含的項(xiàng)為,所以的系數(shù)為.故答案為:.16、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求得在點(diǎn)處的切線方程.【詳解】由,求導(dǎo),知,又,則函數(shù)在點(diǎn)處的切線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由條件可得,解出即可;(2)設(shè),,取AB的中點(diǎn),聯(lián)立直線與橢圓的方程消元,算出,,然后可算出,然后由可得,然后表示出的面積可得答案.小問1詳解】令,得,所以,解得,,所以橢圓C的方程:【小問2詳解】設(shè),,取AB的中點(diǎn),因?yàn)闉橐訟B為斜邊的等腰直角三角形,所以且,聯(lián)立得,則∴又∵,∴,且,,∴,由得,∴∴18、(1),(2)證明見解析【解析】(1)根據(jù)可得,從而可得;(2)利用錯位相減法可得,從而可得,又,即可證明不等式成立.【小問1詳解】解:∵,∴當(dāng)時,,當(dāng)時,,∴,經(jīng)檢驗(yàn),也符合,∴,;【小問2詳解】證明:因?yàn)椋?,∴∴,又∵,∴,所?9、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結(jié)論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結(jié)合面面垂直的性質(zhì)定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結(jié)論【小問1詳解】證明:∵M(jìn),N分別為VA,VB的中點(diǎn),∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC20、(1)(2)分布列見解析;期望為【解析】(1)根據(jù)古典概型的概率公式即可求出;(2)根據(jù)題意可知,隨機(jī)變量X的所有可能取值為0,3,4,6,7,10,再利用相互獨(dú)立事件的概率乘法公式分別求出對應(yīng)的概率,列出分布列即可求出數(shù)學(xué)期望【小問1詳解】從這5人中隨機(jī)抽取3人,恰有2人簡歷達(dá)標(biāo)的概率為【小問2詳解】由題可知,X的所有可能取值為0,3,4,6,7,10,則,,,,,.故X的分布列為:X0346710P所以21、(1)(2)(3)【解析】(1)由題意直接寫出基本事件即可得出答案.(2)樣本空間一共有個基本事件,由(1)可得答案.(3)列出“點(diǎn)數(shù)之和為7”的基本事件,從而可得答案.【小問1詳解】“同時拋擲兩顆骰子”的樣本空間是{1,2,…,6;1,2,…,6},其中i、j分別是拋擲第一顆與第二顆骰子所得的點(diǎn)數(shù).將“出現(xiàn)兩個1點(diǎn)”這個事

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論