2023-2024學年福建省龍巖市一級達標校數(shù)學高二上期末檢測試題含解析_第1頁
2023-2024學年福建省龍巖市一級達標校數(shù)學高二上期末檢測試題含解析_第2頁
2023-2024學年福建省龍巖市一級達標校數(shù)學高二上期末檢測試題含解析_第3頁
2023-2024學年福建省龍巖市一級達標校數(shù)學高二上期末檢測試題含解析_第4頁
2023-2024學年福建省龍巖市一級達標校數(shù)學高二上期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年福建省龍巖市一級達標校數(shù)學高二上期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),,,則a,b,c的大小關(guān)系為()A. B.C. D.2.下列求導錯誤的是()A. B.C. D.3.2018年,倫敦著名的建筑事務(wù)所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設(shè)計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質(zhì),如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.4.已知,,則等于()A.2 B.C. D.5.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數(shù)學建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m6.直線過橢圓內(nèi)一點,若點為弦的中點,設(shè)為直線的斜率,為直線的斜率,則的值為()A. B.C. D.7.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.8.設(shè)等差數(shù)列的前n項和為.若,則()A.19 B.21C.23 D.389.若,則()A.0 B.1C. D.210.設(shè)等差數(shù)列的前n項和為,若,,則()A.60 B.80C.90 D.10011.已知為虛數(shù)單位,復數(shù)是純虛數(shù),則()A. B.4C.3 D.212.設(shè)集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過橢圓的一個焦點的弦與另一個焦點圍成的的周長是______14.如圖,拋物線上的點與軸上的點構(gòu)成等邊三角形,,,其中點在拋物線上,點的坐標為,,猜測數(shù)列的通項公式為________15.雙曲線上一點P到的距離最小值為___________.16.直線與圓相交于兩點M,N,若滿足,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:y2=2px(p>0)的焦點與橢圓M:=1的右焦點重合.(1)求拋物線C的方程;(2)直線y=x+m與拋物線C交于A,B兩點,O為坐標原點,當m為何值時,=0.18.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點,且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積19.(12分)已知數(shù)列的前項和為,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.20.(12分)已知正項等差數(shù)列滿足:,且,,成等比數(shù)列(1)求的通項公式;(2)設(shè)的前n項和為,且,求的前n項和21.(12分)已知拋物線的焦點為F,點是拋物線上的點,且.(1)求拋物線方程;(2)直線與拋物線交于、兩點,且.求△OPQ面積的最小值.22.(10分)在①,②,③這三個條件中任選一個,補充在下面問題的題設(shè)條件中.問題:等差數(shù)列的公差為,滿足,________?(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和得到最小值時的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】構(gòu)造函數(shù),求導判斷其單調(diào)性即可【詳解】令,,令得,,當時,,單調(diào)遞增,,,,,,,故選:A2、B【解析】根據(jù)導數(shù)運算求得正確答案.【詳解】、、運算正確.,B選項錯誤.故選:B3、A【解析】設(shè)出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設(shè)雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.4、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D5、B【解析】設(shè),先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設(shè)塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.6、A【解析】設(shè)點與的坐標,進而可表示與,再結(jié)合兩點在橢圓上,可得的值.【詳解】設(shè)點與,則,,所以,,又點與在橢圓上,所以,,作差可得,即,所以,故選:A.7、A【解析】求得拋物線的焦點從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.8、A【解析】由已知及等差數(shù)列的通項公式得到公差d,再利用前n項和公式計算即可.【詳解】設(shè)等差數(shù)列的公差為d,由已知,得,解得,所以.故選:A9、D【解析】由復數(shù)的乘方運算求,再求模即可.【詳解】由題設(shè),,故2.故選:D10、D【解析】由題設(shè)條件求出,從而可求.【詳解】設(shè)公差為,因為,,故,解得,故,故選:D.11、C【解析】化簡復數(shù)得,由其為純虛數(shù)求參數(shù)a,進而求的模即可.【詳解】由純虛數(shù),∴,解得:,則,故選:C12、C【解析】根據(jù)集合交集和補集的概念及運算,即可求解.【詳解】由題意,集合,,根據(jù)補集的運算,可得,所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得,利用橢圓的定義可得出的周長.【詳解】在橢圓中,,由題意可知,的周長為.故答案為:.14、【解析】求出,,,,,,可猜測,利用累加法,即可求解【詳解】的方程為,代入拋物線可得,同理可得,,,,可猜測,證明:記三角形的邊長為,由題意可知,當時,在拋物線上,可得,當時,,兩式相減得:化簡得:,則數(shù)列是等差數(shù)列,,,,,故答案為:15、2【解析】設(shè)出點P的坐標,利用兩點間距離公式結(jié)合二次函數(shù)求出最小值即可作答.【詳解】設(shè),則,即,于是得,而,則當時,,所以雙曲線上一點P到的距離最小值為2.故答案為:216、【解析】由點到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長公式可得,然后可解.【詳解】因為,所以,所以,圓心到直線的距離因為,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由橢圓的右焦點得出的值,進而得出拋物線C的方程;(2)聯(lián)立直線和拋物線方程,利用韋達定理結(jié)合數(shù)量積公式證明即可【小問1詳解】由題意,橢圓=1的右焦點為(1,0),拋物線y2=2px的焦點為(,0),所以,解得p=2,所以拋物線的方程為y2=4x;【小問2詳解】因為直線y=x+m與拋物線C交于A,B兩點,設(shè)A(x1,y1),B(x2,y2),聯(lián)立方程組,可得x2+2(m﹣2)x+m2=0,由Δ=4(m﹣2)2﹣4m2>0,解得m<1,所以x1+x2=﹣2m+4,x1x2=m2,又因為,又=(x1,y1),=(x2,y2),可得x1x2+y1y2=x1x2+(x1+m)(x2+m)=2x1x2+m(x1+x2)+m2=m2+4m=0,解得m=﹣4<1或m=0<1,故m=﹣4或m=0.18、(1)證明見解析;(2).【解析】(1)過M作MN∥CD交PD于點N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過M作MN∥CD交PD于點N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點M到平面PAD的距離等于點B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.19、(1)(2)【解析】(1)根據(jù),再結(jié)合等比數(shù)列的定義,即可求出結(jié)果;(2)由(1)可知,再利用錯位相減法,即可求出結(jié)果.【小問1詳解】解:因為,當時,,解得當時,,所以,即.所以數(shù)列是首項為2,公比為2的等比數(shù)列.故.【小問2詳解】解:由(1)知,則,所以①②,①-②得.所以數(shù)列的前項和20、(1);(2).【解析】(1)利用等差數(shù)列的通項公式結(jié)合條件即求;(2)利用條件可得,然后利用錯位相減法即求.【小問1詳解】設(shè)等差數(shù)列公差為d,由得,即,化簡得,又,,成等比數(shù)列,則,即,將代入上式得,化簡得,解得或-2(舍去),則,所以【小問2詳解】∵,當時,,當時,,符合上式,則,所以,令,則,,∴,化簡得綜上,的前n項和21、(1);(2).【解析】(1)根據(jù)拋物線的定義列方程,由此求得,進而求得拋物線方程.(2)聯(lián)立直線的方程和拋物線方程,寫出根與系數(shù)關(guān)系,結(jié)合求得的值,求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論