版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆北京豐臺(tái)十二中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運(yùn)史上第一個(gè)舉辦過(guò)夏季奧林匹克運(yùn)動(dòng)會(huì)和冬季奧林匹克運(yùn)動(dòng)會(huì)的城市.根據(jù)安排,國(guó)家體育場(chǎng)(鳥(niǎo)巢)成為北京冬奧會(huì)開(kāi)、閉幕式的場(chǎng)館.國(guó)家體育場(chǎng)“鳥(niǎo)巢”的鋼結(jié)構(gòu)鳥(niǎo)瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個(gè)“相似橢圓”(離心率相同的兩個(gè)橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長(zhǎng)軸一端點(diǎn)A和短軸一端點(diǎn)B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.2.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.3.已知函數(shù),要使函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.4.如圖,正三棱柱中,,則與平面所成角的正弦值等于()A. B.C. D.5.設(shè)數(shù)列的前項(xiàng)和為,且,則()A. B.C. D.6.直線在y軸上的截距是A. B.C. D.7.已知,,,若,,共面,則λ等于()A. B.3C. D.98.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.9.設(shè)函數(shù),若為奇函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.10.彬塔,又稱開(kāi)元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測(cè)量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個(gè)測(cè)量基點(diǎn)與,現(xiàn)測(cè)得,,,在點(diǎn)測(cè)得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.11.若數(shù)列滿足,則()A.2 B.6C.12 D.2012.從直線上動(dòng)點(diǎn)作圓的兩條切線,切點(diǎn)分別為、,則最大時(shí),四邊形(為坐標(biāo)原點(diǎn))面積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)滿足:①是奇函數(shù);②當(dāng)時(shí),.寫(xiě)出一個(gè)滿足條件的函數(shù)________14.已知雙曲線:的右焦點(diǎn)為,過(guò)點(diǎn)向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為_(kāi)_________15.一個(gè)質(zhì)地均勻的正四面體,其四個(gè)面涂有不同的顏色,拋擲這個(gè)正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍(lán),綠},設(shè)事件{紅,黃},事件{紅,藍(lán)},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨(dú)立事件;③F與G是對(duì)立事件;④F與G是獨(dú)立事件.其中正確判斷的序號(hào)是______(請(qǐng)寫(xiě)出所有正確判斷的序號(hào))16.計(jì)算:________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,已知橢圓的短軸端點(diǎn)為、,且,橢圓C的離心率,點(diǎn),過(guò)點(diǎn)P的動(dòng)直線l橢圓C交于不同的兩點(diǎn)M、N與,均不重合),連接,,交于點(diǎn)T(1)求橢圓C的方程;(2)求證:當(dāng)直線l繞點(diǎn)P旋轉(zhuǎn)時(shí),點(diǎn)T總在一條定直線上運(yùn)動(dòng);(3)是否存在直線l,使得?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由18.(12分)已知橢圓的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)斜率為k的直線與橢圓C交于兩點(diǎn),O為坐標(biāo)原點(diǎn),若的面積為定值,判斷是否為定值,如果是,求出該定值;如果不是,說(shuō)明理由.19.(12分)已知雙曲線與雙曲線的漸近線相同,且經(jīng)過(guò)點(diǎn).(1)求雙曲線的方程;(2)已知雙曲線的左右焦點(diǎn)分別為,直線經(jīng)過(guò),傾斜角為與雙曲線交于兩點(diǎn),求的面積.20.(12分)如圖,在正四棱柱中,是上的點(diǎn),滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.21.(12分)在三棱錐A—BCD中,已知CB=CD=,BD=2,O為BD的中點(diǎn),AO⊥平面BCD,AO=2,E為AC的中點(diǎn)(1)求直線AB與DE所成角的余弦值;(2)若點(diǎn)F在BC上,滿足BF=BC,設(shè)二面角F—DE—C的大小為θ,求sinθ的值22.(10分)已知正項(xiàng)數(shù)列的前項(xiàng)和滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因?yàn)閮?nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因?yàn)閮汕芯€斜率之積等于,可得,可得,所以離心率為.故選:C.2、B【解析】根據(jù)條件概率的計(jì)算公式,得所求概率為,故選B.3、A【解析】要使函數(shù)有三個(gè)解,則與圖象有三個(gè)交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】要使函數(shù)有三個(gè)解,則與圖象有三個(gè)交點(diǎn),因?yàn)楫?dāng)時(shí),,所以,可得在上遞減,在遞增,所以,有最小值,且時(shí),,當(dāng)趨向于負(fù)無(wú)窮時(shí),趨向于0,但始終小于0,當(dāng)時(shí),單調(diào)遞減,由圖像可知:所以要使函數(shù)有三個(gè)零點(diǎn),則.故選:A4、C【解析】取中點(diǎn),連接,,證明平面,從而可得為與平面所成角,再利用三角函數(shù)計(jì)算的正弦值.【詳解】取中點(diǎn),連接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴為與平面所成角,由題意,,,在中,.故選:C5、C【解析】利用,把代入中,即可求出答案.【詳解】當(dāng)時(shí),.當(dāng)時(shí),.故選:C.6、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.7、C【解析】由,,共面,設(shè),列方程組能求出λ的值【詳解】∵,,共面,∴設(shè)(實(shí)數(shù)m、n),即,∴,解得故選:C8、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A9、C【解析】利用函數(shù)的奇偶性求出,求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,利用點(diǎn)斜式即可求出結(jié)果【詳解】函數(shù)的定義域?yàn)?,若為奇函?shù),則則,即,所以,所以函數(shù),可得;所以曲線在點(diǎn)處的切線的斜率為,則曲線在點(diǎn)處的切線方程為,即故選:C10、D【解析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D11、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D12、B【解析】分析可知當(dāng)時(shí),最大,計(jì)算出、,進(jìn)而可計(jì)算得出四邊形(為坐標(biāo)原點(diǎn))面積.【詳解】圓的圓心為坐標(biāo)原點(diǎn),連接、、,則,設(shè),則,,則,當(dāng)取最小值時(shí),,此時(shí),,,,故,此時(shí),.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】利用函數(shù)的奇偶性及其單調(diào)性寫(xiě)出函數(shù)解析式即可.【詳解】結(jié)合冪函數(shù)的性質(zhì)可知是奇函數(shù),當(dāng)時(shí),,則符合上述兩個(gè)條件,故答案為:(答案不唯一).14、【解析】由題意得雙曲線的右焦點(diǎn)F(c,0),設(shè)一漸近線OM的方程為,則另一漸近線ON的方程為.設(shè),∵,∴,∴,解得∴點(diǎn)M的坐標(biāo)為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點(diǎn)睛:(1)已知雙曲線的標(biāo)準(zhǔn)方程求雙曲線的漸近線方程時(shí),只要令雙曲線的標(biāo)準(zhǔn)方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進(jìn)線方程的關(guān)鍵是求出的關(guān)系,并根據(jù)焦點(diǎn)的位置確定出漸近線的形式,并進(jìn)一步得到其方程15、②③【解析】由對(duì)立和互斥事件的定義判斷①③;由獨(dú)立事件的性質(zhì)判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對(duì)立事件;,則E與F是獨(dú)立事件;,,則F與G不是獨(dú)立事件故答案為:②③16、【解析】根據(jù)無(wú)窮等比數(shù)列的求和公式直接即可求出答案.【詳解】.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析;(3)不存在直線l,使得成立,理由見(jiàn)解析.【解析】(1)根據(jù)題意,列出方程組,求得,即可求得橢圓的方程;(2)設(shè)直線的方程為,聯(lián)立方程組求得,設(shè),根據(jù)和在同一條直線上,列出方程求得的值,即可求解;(3)設(shè)直線的為,把轉(zhuǎn)化為,聯(lián)立方程組求得,代入列方程,求得,即可得到結(jié)論.【小問(wèn)1詳解】解:由題意可得,解得,所以所求橢圓的方程為.【小問(wèn)2詳解】解:由題意,因?yàn)橹本€過(guò)點(diǎn),可設(shè)直線的方程為,,聯(lián)立方程組,整理得,可得,因?yàn)橹本€與橢圓有兩個(gè)交點(diǎn),所以,解得,設(shè),因?yàn)樵谕粭l直線上,則,①又由在同一條直線上,則,②由①+②3所以,整理得,解得,所以點(diǎn)在直線,即當(dāng)直線l繞點(diǎn)P旋轉(zhuǎn)時(shí),點(diǎn)T總在一條定直線上運(yùn)動(dòng).【小問(wèn)3詳解】解:由(2)知,點(diǎn)在直線上運(yùn)動(dòng),即,設(shè)直線的方程為,且,又由且,可得,即,聯(lián)立方程組,整理得,可得,代入可得,解得,即,此時(shí)直線的斜率不存在,不合題意,所以不存在直線l,使得成立.18、(1)(2)是定值,定值為6【解析】(1)根據(jù)題意條件,可直接求出的值,然后再利用條件中、的關(guān)系,借助即可求解出、的值,從而得到橢圓方程;(2)根據(jù)已知條件設(shè)出、所在直線方程,然后與橢圓聯(lián)立方程,分別表示出根與系數(shù)的關(guān)系,再表示出弦長(zhǎng)關(guān)系,再計(jì)算點(diǎn)到直線的距離,把面積用和的式子表示出來(lái),通過(guò)給出的面積的值,找到和的等量關(guān)系,將等量關(guān)系帶入到利用跟與系數(shù)關(guān)系組合成的中即可得到答案.【小問(wèn)1詳解】由題意:,由知:,故橢圓C的標(biāo)準(zhǔn)方程為,【小問(wèn)2詳解】設(shè):,①橢圓.②聯(lián)立①②得:,,即∴,O到直線l的距離,∴,∴,即,∴.故為定值6.19、(1);(2).【解析】(1)由兩條雙曲線有共同漸近線,可令雙曲線方程為,求出即可得雙曲線的方程;(2)根據(jù)已知有直線為,由其與雙曲線的位置關(guān)系,結(jié)合弦長(zhǎng)公式、點(diǎn)線距離公式及三角形面積公式求的面積.【詳解】(1)設(shè)所求雙曲線方程為,代入點(diǎn)得:,即,∴雙曲線方程為,即.(2)由(1)知:,即直線方程為.設(shè),聯(lián)立得,滿足且,,由弦長(zhǎng)公式得,點(diǎn)到直線的距離.所以【點(diǎn)睛】本題考查了雙曲線,根據(jù)雙曲線共漸近線求雙曲線方程,由直線與雙曲線的相交位置關(guān)系求原點(diǎn)與交點(diǎn)構(gòu)成三角形的面積,綜合應(yīng)用了弦長(zhǎng)公式、點(diǎn)線距離公式、三角形面積公式,屬于基礎(chǔ)題.20、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問(wèn)題;(2)以,,為軸的正方向建立空間直角坐標(biāo)系,求平面,平面的法向量,求法向量的夾角,根據(jù)二面角的余弦值與法向量的夾角的余弦的關(guān)系確定二面角的余弦值.【小問(wèn)1詳解】由題意,,等邊三角形,,∵平面ABCD,∴,則,即為中點(diǎn).連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又,平面平面.【小問(wèn)2詳解】由題意直線平面,四邊形為正方形,故以,,為軸的正方向建立空間直角坐標(biāo)系,則,.設(shè)面的法向量為,同理可得面的法向量,∴二面角的余弦值為21、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量數(shù)量積求直線向量夾角,即得結(jié)果;(2)先求兩個(gè)平面法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州城市職業(yè)學(xué)院《英語(yǔ)教學(xué)實(shí)踐2》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財(cái)經(jīng)大學(xué)《基礎(chǔ)護(hù)理學(xué)基本技能2》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽(yáng)學(xué)院《現(xiàn)代生物科學(xué)導(dǎo)論C》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025海南省建筑安全員C證考試題庫(kù)
- 貴陽(yáng)人文科技學(xué)院《自然地理與人文地理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州珠江職業(yè)技術(shù)學(xué)院《信息管理學(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年天津市建筑安全員B證考試題庫(kù)
- 2025海南建筑安全員C證考試(專職安全員)題庫(kù)附答案
- 廣州應(yīng)用科技學(xué)院《裝配式建筑識(shí)圖與實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025四川省建筑安全員A證考試題庫(kù)及答案
- 數(shù)學(xué)-湖南省天一大聯(lián)考暨郴州市2025屆高考高三第二次教學(xué)質(zhì)量檢測(cè)(郴州二檢懷化統(tǒng)考)試題和答案
- 【可行性報(bào)告】2024年第三方檢測(cè)相關(guān)項(xiàng)目可行性研究報(bào)告
- 2024-2025學(xué)年人教版生物學(xué)八年級(jí)上冊(cè)期末復(fù)習(xí)測(cè)試題(含答案)
- 施工現(xiàn)場(chǎng)環(huán)保要求措施
- 重癥患者的營(yíng)養(yǎng)支持
- 藏醫(yī)學(xué)專業(yè)生涯發(fā)展展示
- 信息安全保密三員培訓(xùn)
- 瓷磚店銷售薪酬方案
- 小學(xué)體育課件教學(xué)
- 2024年事業(yè)單位招聘考試計(jì)算機(jī)基礎(chǔ)知識(shí)復(fù)習(xí)題庫(kù)及答案(共600題)
- 西京學(xué)院《機(jī)械制造技術(shù)基礎(chǔ)》2022-2023學(xué)年第一學(xué)期期末試卷
評(píng)論
0/150
提交評(píng)論