2024屆甘肅省白銀市會寧縣第四中學(xué)高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁
2024屆甘肅省白銀市會寧縣第四中學(xué)高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁
2024屆甘肅省白銀市會寧縣第四中學(xué)高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁
2024屆甘肅省白銀市會寧縣第四中學(xué)高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁
2024屆甘肅省白銀市會寧縣第四中學(xué)高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆甘肅省白銀市會寧縣第四中學(xué)高二上數(shù)學(xué)期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C的離心率為,,是C的兩個焦點,P為C上一點,,若△的面積為,則雙曲線C的實軸長為()A.1 B.2C.4 D.62.已知,為正實數(shù),且,則的最小值為()A. B.C. D.13.已知命題,,則()A., B.,C., D.,4.已知拋物線的焦點為,為坐標(biāo)原點,點在拋物線上,且,點是拋物線的準(zhǔn)線上的一動點,則的最小值為().A. B.C. D.5.拋物線焦點坐標(biāo)為()A. B.C. D.6.若復(fù)數(shù)的模為2,則的最大值為()A. B.C. D.7.已知集合,,則A. B.C. D.8.設(shè),“命題”是“命題”的()A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分也不必要條件9.已知函數(shù),則()A.1 B.2C.3 D.510.已知焦點在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.11.已知四面體中,,若該四面體的外接球的球心為,則的面積為()A. B.C. D.12.某三棱錐的三視圖如圖所示,則該三棱錐內(nèi)切球的表面積為A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線平行,則實數(shù)m的值為____________14.已知拋物線的焦點為,定點,若直線與拋物線相交于、兩點(點在、中間),且與拋物線的準(zhǔn)線交于點,若,則的長為______.15.設(shè),復(fù)數(shù),,若是純虛數(shù),則的虛部為_________.16.命題“矩形的對角線相等”的否命題是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知點,,過點的動直線與過點的動直線的交點為P,,的斜率均存在且乘積為,設(shè)動點Р的軌跡為曲線C.(1)求曲線C的方程;(2)若點M在曲線C上,過點M且垂直于OM的直線交C于另一點N,點M關(guān)于原點O的對稱點為Q.直線NQ交x軸于點T,求的最大值.18.(12分)已知橢圓:經(jīng)過點為,且.(1)求橢圓的方程;(2)若直線與橢圓相切于點,與直線相交于點.已知點,且,求此時的值.19.(12分)已知直線,,,其中與的交點為P(1)求過點P且與平行的直線方程;(2)求以點P為圓心,截所得弦長為8的圓的方程20.(12分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)過的直線交曲線于兩點,求的取值范圍.21.(12分)在三棱錐A—BCD中,已知CB=CD=,BD=2,O為BD的中點,AO⊥平面BCD,AO=2,E為AC的中點(1)求直線AB與DE所成角的余弦值;(2)若點F在BC上,滿足BF=BC,設(shè)二面角F—DE—C的大小為θ,求sinθ的值22.(10分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時,記在區(qū)間的最大值為M,最小值為N,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由已知條件可得,,,再由余弦定理得,進而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實軸長.【詳解】由題意知,點P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實軸長為,故選:C.2、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當(dāng)且僅當(dāng)時等號成立,故的最小值為1,故選:D.3、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.4、A【解析】求出點坐標(biāo),做出關(guān)于準(zhǔn)線的對稱點,利用連點之間相對最短得出為的最小值【詳解】解:拋物線的準(zhǔn)線方程為,,到準(zhǔn)線的距離為2,故點縱坐標(biāo)為1,把代入拋物線方程可得不妨設(shè)在第一象限,則,點關(guān)于準(zhǔn)線的對稱點為,連接,則,于是故的最小值為故選:A【點睛】本題考查了拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題5、C【解析】由拋物線方程確定焦點位置,確定焦參數(shù),得焦點坐標(biāo)【詳解】拋物線的焦點在軸正半軸,,,,因此焦點坐標(biāo)為故選:C6、A【解析】由題意得,表示以為圓心,2為半徑的圓,表示過原點和圓上的點的直線的斜率,由圖可知,當(dāng)直線與圓相切時,取得最值,然后求出切線的斜率即可【詳解】因為復(fù)數(shù)的模為2,所以,所以其表示以為圓心,2為半徑的圓,如圖所示,表示過原點和圓上的點的直線的斜率,由圖可知,當(dāng)直線與圓相切時,取得最值,設(shè)切線方程為,則,解得,所以的最大值為,故選:A7、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點睛】本題主要考查了集合的交集運算,屬于基礎(chǔ)題.8、A【解析】根據(jù)充分、必要條件的概念理解,可得結(jié)果.【詳解】由,則或所以“”可推出“或”但“或”不能推出“”故命題是命題充分且不必要條件故選:A【點睛】本題主要考查充分、必要條件的概念理解,屬基礎(chǔ)題.9、C【解析】利用導(dǎo)數(shù)的定義,以及運算法則,即可求解.【詳解】,,所以,所以故選:C10、D【解析】由題意,化簡即可得出雙曲線的離心率【詳解】解:由題意,.故選:D11、C【解析】根據(jù)四面體的性質(zhì),結(jié)合線面垂直的判定定理、球的性質(zhì)、正弦定理進行求解即可.【詳解】由圖設(shè)點為中點,連接,由,所以,面,則面,且,所以球心面,所以平面與球面的截面為大圓,延長線與此大圓交于點.在三角形中,由,所以,由正弦定理知:三角形的外接圓半徑為,設(shè)三角形的外接圓圓心為點,則面,有,則,設(shè)的外接圓圓心為點,則面,由正弦定理知:三角形PAB的外接圓半徑為,所以,又三角形中,,所以為的角平分線,則,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中點,由,所以,故選:C.【點睛】關(guān)鍵點睛:運用正弦定理、勾股定理、線面垂直的判定定理是解題的關(guān)鍵.12、A【解析】由三視圖可知該幾何體是一個三棱錐,根據(jù)等積法求出幾何體內(nèi)切球的半徑,再計算內(nèi)切球的表面積【詳解】解:由三視圖知該幾何體是一個三棱錐,放入棱長為2的正方體中,如圖所示:設(shè)三棱錐內(nèi)切球的半徑為,則由等體積法得,解得,所以該三棱錐內(nèi)切球的表面積為故選:A【點睛】本題考查了由三視圖求三棱錐內(nèi)切球表面積的應(yīng)用問題,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因為直線與直線平行,所以,解得故答案為:14、【解析】分別過點、作、垂直于拋物線的準(zhǔn)線于、,則,求出直線的方程,可求得拋物線的焦點的坐標(biāo),可得出拋物線的標(biāo)準(zhǔn)方程,再將直線的方程與拋物線的方程聯(lián)立,求出點的縱坐標(biāo),利用拋物線的定義可求得線段的長.【詳解】如圖,分別過點、作、垂直于拋物線的準(zhǔn)線于、,則,由得,所以,,又,所以,直線的方程為,所以,,則,則拋物線的方程為,設(shè)點的縱坐標(biāo)為,由,得或,因為點在、之間,則,所以,.故答案為:.15、【解析】由復(fù)數(shù)除法的運算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復(fù)數(shù)及虛部的定義即可求解.【詳解】解:因為復(fù)數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.16、“若一個四邊形不是矩形,則它的對角線不相等”【解析】否命題是條件否定,結(jié)論否定,即可得解.【詳解】否命題是條件否定,結(jié)論否定,所以命題“矩形的對角線相等”的否命題是“若一個四邊形不是矩形,則它的對角線不相等”故答案為:“若一個四邊形不是矩形,則它的對角線不相等”三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)點坐標(biāo)為,根據(jù)兩直線的斜率之積為得到方程,整理即可;(2)設(shè),,,根據(jù)設(shè)、在橢圓上,則,再由,則,即可表示出直線、的方程,聯(lián)立兩直線方程,即可得到點的縱坐標(biāo),再根據(jù)弦長公式得到,令,則,最后利用基本不等式計算可得;【小問1詳解】解:設(shè)點坐標(biāo)為,定點,,直線與直線的斜率之積為,,【小問2詳解】解:設(shè),,,則,,所以又,所以,又即,則直線:,直線:,由,解得,即,所以令,則,所以因為,當(dāng)且僅當(dāng)即時取等號,所以的最大值為;18、(1);(2).【解析】(1)根據(jù)橢圓離心率公式,結(jié)合代入法進行求解即可;(2)根據(jù)直線與橢圓的位置關(guān)系求出點的坐標(biāo),結(jié)合平面向量垂直的性質(zhì)進行求解即可.【詳解】(1)由已知得,,而,解得,橢圓的方程為;(2)設(shè)直線方程為代入得,化簡得由,得,,設(shè),則,,則設(shè),則,則,所以在軸存在使.,,所以在.19、(1);(2).【解析】(1)首先求、的交點坐標(biāo),根據(jù)的斜率,應(yīng)用點斜式寫出過P且與平行的直線方程;(2)根據(jù)弦心距、弦長、半徑的關(guān)系求圓的半徑,結(jié)合P的坐標(biāo)寫出圓的方程.【小問1詳解】聯(lián)立、得:,可得,故,又的斜率為,則過P且與平行的直線方程,∴所求直線方程為.【小問2詳解】由(1),P到的距離,∴以P為圓心,截所得弦長為8的圓的半徑,∴所求圓的方程為.20、(1);(2).【解析】(1)根據(jù)題意,結(jié)合離心率易,知雙曲線為等軸雙曲線,進而可求解;(2)根據(jù)題意,分直線斜率否存在兩種情形討論,結(jié)合設(shè)而不求法以及向量數(shù)量積的坐標(biāo)公式,即可求解.【小問1詳解】根據(jù)題意,由離心率為,知雙曲線是等軸雙曲線,所以,故雙曲線的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)直線斜率存在時,設(shè)直線的方程為,則由消去,得到,∵直線與雙曲線交于M、N兩點,,解得.設(shè),則有,,因此,∵,∴且,故或,故;②當(dāng)直線的斜率不存在時,此時,易知,,故.綜上所述,所求的取值范圍是.21、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量數(shù)量積求直線向量夾角,即得結(jié)果;(2)先求兩個平面法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.【詳解】(1)連以為軸建立空間直角坐標(biāo)系,則從而直線與所成角的余弦值為(2)設(shè)平面一個法向量為令設(shè)平面一個法向量為令因此【點睛】本題考查利用向量求線線角與二面角,考查基本分析求解能力,屬中檔題.22、(1)答案見解析;(2).【解析】(1)求得,對參數(shù)進行分類討論,根據(jù)導(dǎo)函數(shù)函數(shù)值的正負即可判斷的單調(diào)性;(2)根據(jù)(1)中所求,求得,以及,再求其取值范圍即可.【小問1詳解】因為,故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論