版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
14.3.2公式法第1課時利用平方差公式分解因式1.掌握平方差公式并應(yīng)用于因式分解.2.分析平方差公式的結(jié)構(gòu)與特點,提高判斷、運算能力.3.培養(yǎng)學(xué)生的觀察、聯(lián)想能力,進一步了解換元思想方法.【教學(xué)重點】應(yīng)用平方差公式分解因式.【教學(xué)難點】根據(jù)問題特點,選擇因式分解的方法.一、情境導(dǎo)入,初步認識思考多項式a2-b2有什么特點?你能將它分解因式嗎?【教學(xué)說明】教師講課前,先讓學(xué)生完成“名師導(dǎo)學(xué)”.鼓勵學(xué)生思考并合作交流,并大膽地表述出來.教師可提供以下思考步驟:1.多項式的因式分解是整式乘法的逆用,也就是把一個多項式化成幾個整式的積的形式.2.提公因式法的第一步是觀察多項式各項是否有公因式,如果沒有公因式,就不能使用提公因式法對該多項式進行因式分解.3.對不能使用提公因式法分解因式的多項式,不能說不能因式分解.4.對a2-b2,提公因式法不適用,聯(lián)想(a+b)(a-b)=a2-b2,這啟示我們有新的分解因式的方法.【歸納總結(jié)】因式分解的公式法中平方差公式為a2-b2=(a+b)(a-b),它具有如下特點:(1)左邊是二項式,每項都是平方的形式,兩項的符號相反.(2)右邊是兩個多項式的積,一個因式是兩數(shù)的和,另一個因式是這兩數(shù)的差.二、思考探究,獲取新知例1下列各式中能用平方差公式分解因式的有個(填序號).【分析】①⑤是兩個符號相同的平方項,不能用平方差公式分解;③是三項式,不符合平方差公式的特點;②④⑥都能寫成兩個數(shù)(式)的平方差,在實數(shù)范圍內(nèi)能夠運用平方差公式.【答案】3【教學(xué)說明】能否用平方差公式分解因式,應(yīng)緊緊抓住平方差公式的特點進行判斷,分別從項數(shù)、符號、平方項等方面判斷.例2分解因式.【教學(xué)說明】(1)可以利用加法交換律把負平方項交換放在后面;(2)1是平方項,可以寫成“12”.例3分解因式.【教學(xué)說明】(1)如果多項式的各項中含有多項式,那么先提起公因式,再運用平方差公式求解.(2)因式分解必須進行到每一個多項式的因式都不能分解為止.三、運用新知,深化理解1.下列多項式能用平方差公式分解的有().3.王敏同學(xué)去商店買了單價是9.8元/kg的糖果10.2kg,售貨員剛拿起計算器,王敏就說應(yīng)付99.96元,結(jié)果與售貨員計算的結(jié)果相吻合,售貨員很驚訝地說:“你好像個神童,怎么算得這么快?”王敏得意地說:“過獎了,我只不過利用數(shù)學(xué)上的一個公式”.你知道王敏同學(xué)是怎樣計算的嗎?【教學(xué)說明】設(shè)置上述3個題目是為了加強學(xué)生對于平方差公式的結(jié)構(gòu)認識及應(yīng)用,教師可安排學(xué)生上臺板書解題過程,師生共同檢查.第3題雖然是整式乘法平方差公式應(yīng)用,主要是為了幫助學(xué)生分清整式乘法中的平方差公式與因式分解中的平方差公式的應(yīng)用區(qū)別.【答案】1.D2.(1)(2x+3)(2x-3);(2)(2x+p+q)(p-q);(3)(x2+y2)(x+y)(x-y);(4)ab(a+1)(a-1);(5)(13x-y)(-x+13y);(6)x(x2+x+2)(x+1).3.10.2×9.8=(10+0.2)(10-0.2)=102-0.22=99.96(元).四、師生互動,課堂小結(jié) 集體回顧平方差公式結(jié)構(gòu)與分解因式時應(yīng)注意的事項.1.布置作業(yè):從教材“習題14.3”中選取部分題.2.完成創(chuàng)優(yōu)作業(yè)本課時的“課時作業(yè)”部分.本課時教學(xué)重點是引導(dǎo)學(xué)生因整式乘法中的平方差公式推導(dǎo)出因式分解的平方差公式,教師應(yīng)組織學(xué)生利用這個關(guān)系自主認識出新知識,了解公式的結(jié)構(gòu)特征,并交流思考.加深學(xué)生對公式變式的認識,從而全方位地掌握平方差公式的應(yīng)用范圍,再指導(dǎo)學(xué)生利用實際訓(xùn)練強化對新知識的掌握.第2課時利用完全平方公式分解因式1.理解完全平方公式的特點,能用完全平方公式分解因式.2.探索完全平方公式的結(jié)構(gòu),逐步掌握完全平方公式的應(yīng)用.3.綜合考察分解因式的方法,靈活運用各種方法分解因式.4.培養(yǎng)學(xué)生觀察、分析能力.靈活根據(jù)問題特點解決實際問題.【教學(xué)重點】用完全平方公式分解因式.【教學(xué)難點】靈活應(yīng)用公式分解因式.一、情境導(dǎo)入,初步認識引導(dǎo)學(xué)生由整式乘法中的完全平方公式推導(dǎo)出因式分解中的完全平方公式,即a2±2ab+b2=(a±b)2,用文字表述為:兩個數(shù)的平方和,加上(或減去)這兩數(shù)積的2倍,等于這兩個數(shù)的和(或差)的平方.問題判斷下列各式是不是完全平方式.【教學(xué)說明】由學(xué)生觀察并充分分析式子特點,熟悉完全平方式的結(jié)構(gòu).教師講課前,先讓學(xué)生完成“名師導(dǎo)學(xué)”.(2)(4)(5)都不是.【歸納總結(jié)】完全平方公式的特點:左邊是一個三項式,其中的兩項同號且均為一個整式的平方,另一項是前兩項冪的底數(shù)的積的2倍,符號可“+”可“-”.右邊是兩個整式的和(或差)的平方,中間的符號同左邊的乘積項的符號.二、思考探究,獲取新知例1已知4x2+1+mx是關(guān)于x的完全平方式,求m2-5m+3的值.【分析】先由完全平方的結(jié)構(gòu)特點確定m的值,然后再代入求代數(shù)式的值.解:由題意,得4x2+mx+1=(2x±1)2,即4x2+mx+1=4x2±4x+1,所以m=±4.當m=4時,m2-5m+3=42-5×4+3=-1.當m=-4時,m2-5m+3=(-4)2-5×(-4)+3=39.【教學(xué)說明】在求m的過程中,要考慮全面,不要忽略m=-4這種情況.例2分解因式.例3把下列各式分解因式.【分析】(1)(2)題先提公因式再運用公式;(3)題用公式后還可以再提公因式,再用公式分解.三、運用新知,深化理解1.分解因式.2.分解因式.3.用簡便方法計算下列各題.【教學(xué)說明】上述三題可讓學(xué)生自主探究,教師對有困難的同學(xué)加以指導(dǎo),最后師生共同評析.四、師生互動,課堂小結(jié) 1.表述完全平方公式的結(jié)構(gòu)特征.2.交流如何對一個二次三項式進行因式分解.1.布置作業(yè):從教材“習
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人經(jīng)營性貸款還款協(xié)議模板8篇
- 二零二五年廢棄物處理及廢品回收承包合同書3篇
- 二零二五年度倉儲租賃與智能化改造合同3篇
- 二零二五年度外資獨資公司股權(quán)變更操作細則合同
- 2025年個人汽車維修服務(wù)質(zhì)押擔保合同3篇
- 2025版高端餐飲集團租賃管理與服務(wù)保障合同3篇
- 個人委托支付事務(wù)具體合同版B版
- 2024酒店裝修設(shè)計合同
- 2025年度智能果園蘋果采購與銷售管理合同4篇
- 2025年度園林景觀設(shè)計專利授權(quán)許可合同3篇
- 碳纖維增強復(fù)合材料在海洋工程中的應(yīng)用情況
- 多重耐藥菌病人的管理-(1)課件
- (高清版)TDT 1056-2019 縣級國土資源調(diào)查生產(chǎn)成本定額
- 環(huán)境監(jiān)測對環(huán)境保護的意義
- 2023年數(shù)學(xué)競賽AMC8試卷(含答案)
- 神經(jīng)外科課件:神經(jīng)外科急重癥
- 2024年低壓電工證理論考試題庫及答案
- 2023年十天突破公務(wù)員面試
- 《瘋狂動物城》中英文對照(全本臺詞)
- 醫(yī)院住院醫(yī)師規(guī)范化培訓(xùn)證明(樣本)
- 小學(xué)六年級語文閱讀理解100篇(及答案)
評論
0/150
提交評論