2024屆廣東省深圳市高二上數(shù)學期末教學質量檢測試題含解析_第1頁
2024屆廣東省深圳市高二上數(shù)學期末教學質量檢測試題含解析_第2頁
2024屆廣東省深圳市高二上數(shù)學期末教學質量檢測試題含解析_第3頁
2024屆廣東省深圳市高二上數(shù)學期末教學質量檢測試題含解析_第4頁
2024屆廣東省深圳市高二上數(shù)學期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省深圳市高二上數(shù)學期末教學質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓與雙曲線有相同的焦點,且它們的離心率之積為1,則橢圓的標準方程為()A. B.C. D.2.若在直線上,則直線的一個方向向量為()A. B.C. D.3.2021年7月,某文學網站對該網站的數(shù)字媒體內容能否滿足讀者需要進行了調查,調查部門隨機抽取了名讀者,所得情況統(tǒng)計如下表所示:滿意程度學生族上班族退休族滿意一般不滿意記滿分為分,一般為分,不滿意為分.設命題:按分層抽樣方式從不滿意的讀者中抽取人,則退休族應抽取人;命題:樣本中上班族對數(shù)字媒體內容滿意程度的方差為.則下列命題中為真命題的是()A. B.C. D.4.如圖在中,,,在內作射線與邊交于點,則使得的概率是()A. B.C. D.5.已知橢圓的左、右焦點分別為,,直線過且與橢圓相交于不同的兩點,、不在軸上,那么△的周長()A.是定值B.是定值C.不是定值,與直線的傾斜角大小有關D.不是定值,與取值大小有關6.已知雙曲線,過原點作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點,以線段為直徑的圓過右焦點,則雙曲線的離心率為().A. B.C. D.7.設,,,則,,大小關系為A. B.C. D.8.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定9.已知平面直角坐標系內一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構成圖形的面積為()A. B.C. D.10.現(xiàn)從名男醫(yī)生和名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊”,用表示事件“抽到的兩名醫(yī)生性別相同”,表示事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則()A. B.C. D.11.考試停課復習期間,小王同學計劃將一天中的7節(jié)課全部用來復習4門不同的考試科目,每門科目復習1或2節(jié)課,則不同的復習安排方法有()種A.360 B.630C.2520 D.1512012.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四棱錐中,平面,底面為矩形,分別為的中點,連接,則點到平面的距離為__________.14.若函數(shù)在x=1處的切線與直線y=kx平行,則實數(shù)k=___________.15.設,復數(shù),,若是純虛數(shù),則的虛部為_________.16.設等差數(shù)列,前項和分別為,,若對任意自然數(shù)都有,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正四棱錐底面的四個頂點在球的同一個大圓上,點在球面上,且正四棱錐的體積為.(1)該正四棱錐的表面積的大??;(2)二面角的大小.(結果用反三角表示)18.(12分)已知過點的圓的圓心M在直線上,且y軸被該圓截得的弦長為4(1)求圓M的標準方程;(2)設點,若點P為x軸上一動點,求的最小值,并寫出取得最小值時點P的坐標19.(12分)如圖,在直棱柱中,已知,點分別的中點.(1)求異面直線與所成的角的大小;(2)求點到平面的距離;(3)在棱上是否存在一點,使得直線與平面所成的角的大小是?若存在,請指出點的位置,若不存在,請說明理由.20.(12分)已知在△ABC中,角A,B,C的對邊分別為a,b,c,且(1)求C;(2)若,求的最大值21.(12分)函數(shù),.(1)討論函數(shù)的單調性;(2)若在上恒成立,求實數(shù)的取值范圍.22.(10分)已知數(shù)列滿足(1)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】計算雙曲線的焦點為,離心率,得到橢圓的焦點為,離心率,計算得到答案.【詳解】雙曲線的焦點為,離心率,故橢圓的焦點為,離心率,即.解得,故橢圓標準方程為:.故選:.【點睛】本題考查了橢圓和雙曲線的離心率,焦點,橢圓的標準方程,意在考查學生的計算能力.2、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D3、A【解析】由抽樣比再乘以可得退休族應抽取人數(shù)可判斷命題,求出上班族對數(shù)字媒體內容滿意程度的平均分,由方差公式計算方差可判斷,再由復合命題的真假判斷四個選項,即可得正確選項.【詳解】因為退休族應抽取人,所以命題正確;樣本中上班族對數(shù)字媒體內容滿意程度的平均分為,方差為,命題正確,所以為真,、、為假命題,故選:4、C【解析】由題意可得,根據三角形中“大邊對大角,小邊對小角”的性質,將轉化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎題5、B【解析】由直線過且與橢圓相交于不同的兩點,,且,為橢圓兩焦點,根據橢圓的定義即可得△的周長為,則答案可求【詳解】橢圓,橢圓的長軸長為,∴△的周長為故選:B6、A【解析】設雙曲線的左焦點為,連接、,求得、,利用雙曲線的定義可得出關于、的等式,即可求得雙曲線的離心率.【詳解】設雙曲線的左焦點為,連接、,如下圖所示:由題意可知,點為的中點,也為的中點,且,則四邊形為矩形,故,由已知可知,由直角三角形的性質可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.7、C【解析】由,可得,,故選C.考點:指數(shù)函數(shù)性質8、B【解析】利用余弦定理結合橢圓的定義可求得、,即可得出結論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.9、D【解析】先找臨界情況當PQ與圓C相切時,,進而可得滿足條件的點P形成的圖形為大圓(包括內部),即求.【詳解】當PQ與圓C相切時,,這種情況為臨界情況,當P往外時無法找到點Q使,當P往里時,可以找到Q使,故滿足條件的點P形成的圖形為大圓(包括內部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點P構成圖形的面積為.故選:D.【點睛】關鍵點點睛:本題的關鍵是找出臨界情況時點所滿足的條件,進而即可得到動點滿足條件的圖形,問題即可解決.10、A【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件概率公式即可【詳解】解:由已知得,,則,故選:A【點睛】此題考查條件概率問題,屬于基礎題11、C【解析】,先安排復習節(jié)的科目,然后安排其余科目,由此計算出不同的復習安排方法數(shù).【詳解】第步,門科目選門,安排節(jié)課,方法數(shù)有種,第步,安排其余科目,每門科目節(jié)課,方法數(shù)有種,所以不同的復習安排方法有種.故選:C12、A【解析】由雙曲線的漸近線方程,可得,再由的關系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用轉化法,根據線面平行的性質,結合三棱錐的體積等積性進行求解即可.【詳解】設是的中點,連接,因為是的中點,所以,因為平面,平面,所以平面,因此點到平面的距離等于點到平面的距離,設為,因為平面,所以,,于是有,底面為矩形,所以有,,因為平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因為,所以,故答案為:14、2【解析】由題可求函數(shù)的導數(shù),再利用導數(shù)的幾何意義即求.【詳解】∵,∴,,又函數(shù)在x=1處的切線與直線y=kx平行,∴.故答案為:2.15、【解析】由復數(shù)除法的運算法則求出,又是純虛數(shù),可求出,從而根據共軛復數(shù)及虛部的定義即可求解.【詳解】解:因為復數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.16、【解析】由等差數(shù)列的性質可得:.再利用已知即可得出【詳解】由等差數(shù)列的性質可得:對于任意的都有,則故答案為:【點睛】本題考查了等差數(shù)列的性質,求和公式,考查了推理能力與計算能力,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)首先求出球的半徑,即可得到四棱錐的棱長,再根據錐體的表面積公式計算可得;(2)取中點,聯(lián)結,即可得到,從而得到為二面角的平面角,再利用余弦定理計算可得.【小問1詳解】解:設球的半徑為,則解得,所以所有棱長均為,因此【小問2詳解】解:取中點,聯(lián)結,因為均為正三角形,因此,即為二面角的平面角.,因此二面角的大小為.18、(1)(2),【解析】(1)用待定系數(shù)法設出圓心,根據圓過點和弦長列出方程求解即可;(2)當三點共線時有最小值,求出直線MN的方程,令y=0即可.【小問1詳解】由題意可設圓心,因為y軸被圓M截得的弦長為4,所以,又,則,化簡得,解得,則圓心,半徑,所以圓M的標準方程為【小問2詳解】點關于x軸的對稱點為,則,當且僅當M,P,三點共線時等號成立,因為,則直線的方程為,即,令,得,則19、(1)(2)(3)不存在,理由見解析【解析】(1)由題意,以點A為原點,方向分別為x軸、y軸與z軸的正方向,建立空間直角坐標系.,利用向量法求解異面直線成角即可.(2)先求出平面DEF的一個法向量,然后利用向量法求解點面距離.(3)設(),由可得關于的方程,從而得出答案.【小問1詳解】由題意,以點A為原點,方向分別為x軸、y軸與z軸的正方向,建立空間直角坐標系.則,,,,故,,從而,所以異面直線AE與DF所成角的大小為.小問2詳解】,設平面DEF的法向量為,則,即,取,得到平面DEF的一個法向量為.點A到平面DEF的距離為.【小問3詳解】假設存在滿足條件的點M,設(),則,從而.即,即,此方程無實數(shù)解,故不存在滿足條件的點M.20、(1);(2).【解析】(1)將題設條件化為,結合余弦定理即可知C的大小.(2)由(1)及正弦定理邊角關系可得,再應用輔助角公式、正弦函數(shù)的性質即可求最大值.【小問1詳解】由,得,即,由余弦定理得:,又,所以【小問2詳解】由(1)知:,則,設△ABC外接圓半徑為R,則,當時,取得最大值為21、(1)答案見解析;(2).【解析】(1)求出函數(shù)的定義域為,求得,分、、三種情況討論,分析導數(shù)的符號變化,由此可得出函數(shù)的單調遞增區(qū)間和遞減區(qū)間;(2)構造函數(shù),由題意可知恒成立,對實數(shù)分和兩種情況討論,利用導數(shù)分析函數(shù)在區(qū)間上的單調性,驗證是否成立,由此可得出實數(shù)的取值范圍.【詳解】(1)函數(shù)的定義域為,.(i)當時,,函數(shù)在上單調遞增;(ii)當時,令得.若,則;若,則.①當時,,函數(shù)在上單調遞增;②當時,,當時,,函數(shù)單調遞增;當時,,函數(shù)單調遞減;綜上,可得,當時,函數(shù)在上單調遞增;當時,函數(shù)在上單調遞增,在上單調遞減;(2)設,,則.當時,單調遞增,則.所以,函數(shù)在上單調遞增,且.當時,,于是,函數(shù)在上單調遞增,恒成立,符合題意;當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論