2024屆河北省唐山市灤南縣高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁
2024屆河北省唐山市灤南縣高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁
2024屆河北省唐山市灤南縣高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁
2024屆河北省唐山市灤南縣高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁
2024屆河北省唐山市灤南縣高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆河北省唐山市灤南縣高二上數(shù)學(xué)期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某公司有1000名員工,其中:高層管理人員為50名,屬于高收入者;中層管理人員為150名,屬于中等收入者;一般員工為800名,屬于低收入者.要對這個公司員工的收入情況進行調(diào)查,欲抽取100名員工,應(yīng)當抽取的一般員工人數(shù)為()A.100 B.15C.80 D.502.已知關(guān)于x的不等式的解集為空集,則的最小值為()A. B.2C. D.43.《周髀算經(jīng)》中有這樣一個問題:從冬至起,接下來依次是小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種共十二個節(jié)氣,其日影長依次成等差數(shù)列,其中大寒、驚蟄、谷雨三個節(jié)氣的日影長之和為25.5尺,且前九個節(jié)氣日影長之和為85.5尺,則立春的日影長為()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺4.拋物線的準線方程是A. B.C. D.5.已知命題:,,命題:,,則()A.是假命題 B.是真命題C.是真命題 D.是假命題6.已知拋物線:的焦點為F,準線l上有兩點A,B,若為等腰直角三角形且面積為8,則拋物線C的標準方程是()A. B.C.或 D.7.如圖,在正方體中,是側(cè)面內(nèi)一動點,若到直線與直線的距離相等,則動點的軌跡所在的曲線是()A.直線 B.圓C.雙曲線 D.拋物線8.如果,,…,是拋物線C:上的點,它們的橫坐標依次為,,…,,點F是拋物線C的焦點.若=10,=10+n,則p等于()A.2 B.C. D.49.函數(shù)的定義域為,其導(dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.510.已知是雙曲線的左焦點,為右頂點,是雙曲線上的點,軸,若,則雙曲線的離心率為()A. B.C. D.11.已知雙曲線的右焦點為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點,若(為坐標原點),則雙曲線的離心率為().A. B.C. D.12.當我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在(0,+∞)內(nèi)有且只有一個零點,則a的值為_____14.若函數(shù)在區(qū)間內(nèi)存在最大值,則實數(shù)的取值范圍是____________.15.已知橢圓,為其右焦點,過垂直于軸的直線與橢圓相交所得的弦長為,則橢圓的方程為________.16.已知幾何體如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長為1,點M在DG上,若直線MB與平面BEF所成的角為45°,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某高校自主招生考試分筆試與面試兩部分,每部分考試成績只記“通過”與“不通過”,兩部分考試都“通過”者,則考試“通過”,并給予錄取.甲、乙兩人在筆試中“通過”的概率依次為,在面試中“通過”的概率依次為,筆試和面試是否“通過”是獨立的,那么(1)甲、乙兩人都參加此高校的自主招生考試,誰獲得錄取的可能性大?(2)甲、乙兩人都參加此高校的自主招生考試,求恰有一人獲得錄取的概率.18.(12分)已知動圓過定點,且與直線相切,圓心的軌跡為(1)求動點的軌跡方程;(2)已知直線交軌跡于兩點,,且中點的縱坐標為,則的最大值為多少?19.(12分)已知數(shù)列為等差數(shù)列,是公比為2的等比數(shù)列,且滿足(1)求數(shù)列和的通項公式;(2)令求數(shù)列的前n項和;20.(12分)如圖,三棱錐中,為等邊三角形,且面面,(1)求證:;(2)當與平面BCD所成角為45°時,求二面角的余弦值21.(12分)在下列所給的三個條件中任選一個,補充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點M(3,5),且______(1)求的方程;(2)若與圓相交于點A、B,求弦AB的長22.(10分)在平面直角坐標系中,已知菱形的頂點和所在直線的方程為.(1)求對角線所在直線的一般方程;(2)求所在直線的一般方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】按照比例關(guān)系,分層抽取.【詳解】由題意可知,所以應(yīng)當抽取的一般員工人數(shù)為.故選:C2、D【解析】根據(jù)一元二次不等式的解集的情況得出二次項系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當且僅當取等號,所以的最小值為4.故答案為:4.【點睛】本題主要考查均值不等式,關(guān)鍵在于由一元二次不等式的解集的情況得出的關(guān)系,再將所求的式子運用不等式的性質(zhì)降低元的個數(shù),運用均值不等式,是中檔題.3、B【解析】設(shè)影長依次成等差數(shù)列,公差為,根據(jù)題意結(jié)合等差數(shù)列的通項公式及前項和公式求出首項和公差,即可得出答案.【詳解】解:設(shè)影長依次成等差數(shù)列,公差為,則,前9項之和,即,解得,所以立春的日影長為.故選:B.4、C【解析】根據(jù)拋物線的概念,可得準線方程為5、C【解析】先分別判斷命題、的真假,再利用邏輯聯(lián)結(jié)詞“或”與“且”判斷命題的真假.【詳解】由題意,,所以,成立,即命題為真命題,,所以不存在,使得,即命題為假命題,所以是假命題,為真命題,所以是真命題,是假命題,是假命題,是真命題.故選:C6、C【解析】分或()兩種情況討論,由面積列方程即可求解【詳解】由題意得,當時,,解得;當或時,,解得,所以拋物線的方程是或.故選:C.7、D【解析】由到直線的距離等于到點的距離可得到直線的距離等于到點的距離,然后可得答案.【詳解】因為到直線的距離等于到點的距離,所以到直線的距離等于到點的距離,所以動點的軌跡是以為焦點、為準線的拋物線故選:D8、A【解析】根據(jù)拋物線定義得個等式,相加后,利用已知條件可得結(jié)果.【詳解】拋物線C:的準線為,根據(jù)拋物線的定義可知,,,,,所以,所以,所以,所以.故選:A【點睛】關(guān)鍵點點睛:利用拋物線的定義解題是解題關(guān)鍵,屬于基礎(chǔ)題.9、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側(cè)的導(dǎo)數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.10、C【解析】根據(jù)條件可得與,進而可得,,的關(guān)系,可得解.【詳解】由已知得,設(shè)點,由軸,則,代入雙曲線方程可得,即,又,所以,即,整理可得,故,解得或(舍),故選:C.11、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由,可知為的三等分點,用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由到漸近線的距離為,所以,又,所以,因為,所以,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.12、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、a=3【解析】對函數(shù)進行求導(dǎo),分類討論函數(shù)單調(diào)性,根據(jù)單調(diào)性結(jié)合已知可以求出a的值.【詳解】∵函數(shù)在(0,+∞)內(nèi)有且只有一個零點,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①當a≤0時,f′(x)=2x(3x﹣a)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,f(0)=1,f(x)在(0,+∞)上沒有零點,舍去;②當a>0時,f′(x)=2x(3x﹣a)>0的解為x,∴f(x)在(0,)上遞減,在(,+∞)遞增,又f(x)只有一個零點,∴f()1=0,解得a=3故答案為:a=3【點睛】本題考查了利用導(dǎo)數(shù)研究已知函數(shù)的零點求參數(shù)取值問題,考查了分類討論和數(shù)學(xué)運算能力.14、【解析】首先利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,再根據(jù)函數(shù)在開區(qū)間內(nèi)存在最大值,可判斷極大值點就是最大值點,列式求解.【詳解】由題可知:所以函數(shù)在單調(diào)遞減,在單調(diào)遞增,故函數(shù)的極大值為.所以在開區(qū)間內(nèi)的最大值一定是又,所以得實數(shù)的取值范圍是故答案為:【點睛】關(guān)鍵點點睛:由函數(shù)在開區(qū)間內(nèi)若存在最大值,即極大值點在區(qū)間內(nèi),同時還得滿足極大值點是最大值,還需列不等式,不要忽略這個不等式.15、##【解析】將代入橢圓的方程,可得出,可得出關(guān)于的等式,求出的值,進而可求得的值,由此可得出橢圓的方程.【詳解】將代入橢圓的方程可得,可得,由已知可得,整理可得,,解得,所以,,因此,橢圓的方程為.故答案為:.16、##【解析】把該幾何體補成一個正方體,如圖,利用正方體的性質(zhì)證明面面垂直得出直線MB與平面BEF所成的角,然后計算可得【詳解】把該幾何體補成一個正方體,如圖,,連接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面內(nèi)的直線在平面上的射影是,即是直線MB與平面BEF所成的角,,,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)甲獲得錄取的可能性大;(2)【解析】(1)利用獨立事件的乘法公式求出甲、乙兩人被錄取的概率并比較大小,即得結(jié)果.(2)應(yīng)用對立事件、獨立事件的概率求法,結(jié)合互斥事件的加法公式求恰有一人獲得錄取的概率.【小問1詳解】記“甲通過筆試”為事件,“甲通過面試”為事件,“甲獲得錄取”為事件A,“乙通過筆試”為事件,“乙通過面試”為事件,“乙獲得錄取”為事件B,則,,即,所以甲獲得錄取的可能性大.【小問2詳解】記“甲乙兩人恰有一人獲得錄取”為事件C,則.18、(1)(2)【解析】(1)利用拋物線的定義直接可得軌跡方程;(2)設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,再根據(jù)二次函數(shù)的性質(zhì)可得最值.【小問1詳解】由題設(shè)點到點的距離等于它到的距離,點的軌跡是以為焦點,為準線的拋物線,所求軌跡的方程為;【小問2詳解】由題意易知直線的斜率存在,設(shè)中點為,直線的方程為,聯(lián)立直線與拋物線,得,,且,,又中點為,即,,故恒成立,,,所以,當時,取最大值為.【點睛】(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式19、(1),(2)【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列通項公式得到,根據(jù)通項公式的求法得到結(jié)果;(2)分組求和即可.【小問1詳解】設(shè)的公差為,由已知,有解得,所以的通項公式為,的通項公式為.【小問2詳解】,分組求和,分別根據(jù)等比數(shù)列求和公式與等差數(shù)列求和公式得到:.20、(1)證明見解析;(2).【解析】(1)根據(jù)給定條件證得平面即可推理作答.(2)由與平面BCD所成角確定正邊長與CD長的關(guān)系,再作出二面角的平面角,借助余弦定理計算作答.【小問1詳解】在三棱錐中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小問2詳解】取BC中點F,連接AF,DF,如圖,因為等邊三角形,則,而平面平面,平面平面,平面,于是得平面,是與平面BCD所成角,即,令,則,因,即有,由(1)知,,則有,過C作交AD于O,在平面內(nèi)過O作交BD于E,連CE,從而得是二面角的平面角,中,,,中,由余弦定理得,,,顯然E是斜邊中點,則,中,由余弦定理得,所以二面角的余弦值.21、(1)(2)【解析】(1)可依次根據(jù)直線方程的點斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長.【小問1詳解】選條件①:∵直線過點(3,5)及(-1,2),∴直線的斜率為,依題意,直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論