版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省武漢第二中學高二上數(shù)學期末學業(yè)水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓經(jīng)過點,當該橢圓的四個頂點構成的四邊形的周長最小時,其標準方程為()A. B.C. D.2.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數(shù)學建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m3.在數(shù)列中,若,,則()A.16 B.32C.64 D.1284.函數(shù)的圖象在點處的切線的傾斜角為()A. B.0C. D.15.隨機抽取甲乙兩位同學連續(xù)9次成績(單位:分),得到如圖所示的成績莖葉圖,關于這9次成績,則下列說法正確的是()A.甲成績的中位數(shù)為33 B.乙成績的極差為40C.甲乙兩人成績的眾數(shù)相等 D.甲成績的平均數(shù)低于乙成績的平均數(shù)6.在空間四邊形OABC中,,,,點M在線段OA上,且,N為BC中點,則等于()A. B.C. D.7.已知函數(shù),當時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.8.已知為等比數(shù)列的前n項和,,,則()A.30 B.C. D.30或9.2020年12月4日,嫦娥五號探測器在月球表面第一次動態(tài)展示國旗.1949年公布的《國旗制法說明》中就五星的位置規(guī)定:大五角星有一個角尖正向上方,四顆小五角星均各有一個角尖正對大五角星的中心點.有人發(fā)現(xiàn),第三顆小星的姿態(tài)與大星相近.為便于研究,如圖,以大星的中心點為原點,建立直角坐標系,,,,分別是大星中心點與四顆小星中心點的聯(lián)結線,,則第三顆小星的一條邊AB所在直線的傾斜角約為()A. B.C. D.10.已知數(shù)列滿足,且,則的值為()A.3 B.C. D.11.在流行病學中,基本傳染數(shù)是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個人為第一輪傳染,這個人每人再傳染個人為第二輪傳染)A.20天 B.24天C.28天 D.32天12.拋物線的焦點到準線的距離為()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標系中,點關于原點的對稱點為點,則___________.14.斐波那契數(shù)列,又稱“兔子數(shù)列”,由數(shù)學家斐波那契研究兔子繁殖問題時引入.已知斐波那契數(shù)列滿足,,,若記,,則________.(用,表示)15.拋物線的聚焦特點:從拋物線的焦點發(fā)出的光經(jīng)過拋物線反射后,光線都平行于拋物線的對稱軸.另一方面,根據(jù)光路的可逆性,平行于拋物線對稱軸的光線射向拋物線后的反射光線都會匯聚到拋物線的焦點處.已知拋物線,一條平行于拋物線對稱軸的光線從點向左發(fā)出,先經(jīng)拋物線反射,再經(jīng)直線反射后,恰好經(jīng)過點,則該拋物線的標準方程為___________.16.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結來記錄數(shù)量,即“結繩計數(shù)”,如圖,一位古人在從右到左依次排列的紅繩子上打結,滿三進一,用來記錄每年進的錢數(shù).由圖可得,這位古人一年的收入的錢數(shù)為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C:(1)若點,求過點的圓的切線方程;(2)若點為圓的弦的中點,求直線的方程18.(12分)已知圓D經(jīng)過點A(-1,0),B(3,0),C(1,2).(1)求圓D的標準方程;(2)若直線l:與圓D交于M、N兩點,求線段MN的長度.19.(12分)已知圓M過C(1,﹣1),D(﹣1,1)兩點,且圓心M在x+y﹣2=0上.(1)求圓M的方程;(2)設P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.20.(12分)某城鎮(zhèn)為推進生態(tài)城鎮(zhèn)建設,對城鎮(zhèn)的生態(tài)環(huán)境、市容市貌等方面進行了全面治理,為了解城鎮(zhèn)居民對治理情況的評價和建議,現(xiàn)隨機抽取了200名居民進行問卷并評分(滿分100分),將評分結果制成如下頻率分布直方圖,已知圖中a,b,c成等比數(shù)列,且公比為2(1)求圖中a,b,c的值,并估計評分的均值(各段分數(shù)用該段中點值作代表);(2)根據(jù)統(tǒng)計數(shù)據(jù),在評分為“50~60”和“80~90”的居民中用分層抽樣的方法抽取了6個居民.若從這6個居民中隨機選擇2個參加座談,求所抽取的2個居民中至少有1個評分在“80~90”的概率21.(12分)設函數(shù)(1)若,求的單調區(qū)間和極值;(2)在(1)的條件下,證明:若存在零點,則在區(qū)間上僅有一個零點;(3)若存在,使得,求的取值范圍22.(10分)某中醫(yī)藥研究所研制出一種新型抗過敏藥物,服用后需要檢驗血液抗體是否為陽性,現(xiàn)有n(n∈N*)份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:①逐份檢驗,需要檢驗n次;②混合檢驗,將其中k(k∈N*,2≤k≤n)份血液樣本分別取樣混合在一起檢驗,若結果為陰性,則這k份的血液全為陰性,因而這k份血液樣本只需檢驗一次就夠了,若檢驗結果為陽性,為了明確這k份血液究竟哪份為陽性,就需要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為k+1次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為p(0<p<1).(1)假設有5份血液樣本,其中只有兩份樣本為陽性,若采取逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.(2)現(xiàn)取其中的k(k∈N*,2≤k≤n)份血液樣本,采用逐份檢驗的方式,樣本需要檢驗的次數(shù)記為ξ1;采用混合檢驗的方式,樣本需要檢驗的總次數(shù)記為ξ2.(i)若k=4,且,試運用概率與統(tǒng)計的知識,求p的值;(ii)若,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】把點代入橢圓方程得,寫出橢圓頂點坐標,計算四邊形周長討論它取最小值時的條件即得解.【詳解】依題意得,橢圓的四個頂點為,順次連接這四個點所得四邊形為菱形,其周長為,,當且僅當,即時取“=”,由得a2=12,b2=4,所求標準方程為.故選:A【點睛】給定兩個正數(shù)和(兩個正數(shù)倒數(shù)和)為定值,求這兩個正數(shù)倒數(shù)和(兩個正數(shù)和)的最值問題,可借助基本不等式中“1”的妙用解答.2、B【解析】設,先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.3、C【解析】根據(jù)題意,為等比數(shù)列,用基本量求解即可.【詳解】因為,故是首項為2,公比為2的等比數(shù)列,故.故選:C4、A【解析】求出導函數(shù),計算得切線斜率,由斜率求得傾斜角【詳解】,設傾斜角為,則,,故選:A5、D【解析】按照莖葉圖所給的數(shù)據(jù)計算即可.【詳解】由莖葉圖可知,甲的成績?yōu)椋?1,22,23,24,32,32,33,41,52,其中位數(shù)為32,眾數(shù)為32,平均數(shù)為;乙的成績?yōu)椋?0,22,31,32,35,42,42,50,52,極差為52-10=42,眾數(shù)為42,平均數(shù)為;由以上數(shù)據(jù)可知,A錯誤,B錯誤,C錯誤,D正確;故選:D.6、B【解析】由題意結合圖形,直接利用,求出,然后即可解答.【詳解】解:因為空間四邊形OABC如圖,,,,點M在線段OA上,且,N為BC的中點,所以.所以.故選:B.7、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設,則,又設,則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導數(shù)研究函數(shù)的性質,簡單的線性規(guī)劃8、A【解析】利用等比數(shù)列基本量代換代入,列方程組,即可求解.【詳解】由得,則等比數(shù)列的公比,則得,令,則即,解得或(舍去),,則故選:A9、C【解析】由五角星的內角為,可知,又平分第三顆小星的一個角,過作軸平行線,則,即可求出直線的傾斜角.【詳解】都為五角星的中心點,平分第三顆小星的一個角,又五角星的內角為,可知,過作軸平行線,則,所以直線的傾斜角為,故選:C【點睛】關鍵點點睛:本題考查直線傾斜角,解題的關鍵是通過做輔助線找到直線的傾斜角,通過幾何關系求出傾斜角,考查學生的數(shù)形結合思想,屬于基礎題.10、B【解析】根據(jù)題意,依次求出,觀察規(guī)律,進而求出數(shù)列的周期,然后通過周期性求得答案.【詳解】因為數(shù)列滿足,,所以,所以,,,可知數(shù)列具有周期性,周期為3,,所以.故選:B11、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計算n輪傳染后感染的總人數(shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個初始感染者增加到1000人大約需要24天,故選:B【點睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關鍵在于熟練掌握等比數(shù)列的有關公式并能靈活運用,尤其需要注意的是,在使用等比數(shù)列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程12、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關基本量,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用關于原點對稱的點的坐標特征求出點,再利用空間兩點間的距離公式即可求.【詳解】因為B與關于原點對稱,故,所以.故答案為:.14、【解析】由已知兩式相加求得,得,得到,從而得到,,利用可得答案.【詳解】因為,由,,得,所以,得,因為,所以,,所以,,所以,.故答案為:.15、【解析】根據(jù)拋物線的聚焦特點,經(jīng)過拋物線后經(jīng)過拋物線焦點,再經(jīng)直線反射后經(jīng)過點,則根據(jù)反射特點,列出相關方程,解出方程即可.【詳解】設光線與拋物線的交點為,拋物線的焦點為,則可得:拋物線的焦點為:則直線的方程為:設直線與直線的交點為,則有:解得:則過點且垂直于的直線的方程為:根據(jù)題意可知:點關于直線的對稱點在直線上設點,的中點為,則有:直線垂直于,則有:點在直線上,則有:點在直線上,則有:化簡得:又故故答案為:【點睛】直線關于直線對稱對稱,利用中點坐標公式和直線與直線垂直的特點建立方程,根據(jù)題意列出隱含的方程是關鍵16、25【解析】將原問題轉化為三進制計算,即可求解【詳解】解:由題意可得,從左到右的數(shù)字依次為221,即古人一年的收入的錢數(shù)為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)求出圓的圓心與半徑,分過點的直線的斜率不存和存在兩種情況,利用圓心到直線距離等于半徑,即可求出切線方程;(2)根據(jù)圓心與弦中點的連線垂直線,可求出直線的斜率,進而求出結果.【小問1詳解】解:由題意知圓心的坐標為,半徑,當過點的直線的斜率不存在時,方程為由圓心到直線的距離知,此時,直線與圓相切當過點的直線的斜率存在時,設方程為,即.由題意知,解得,∴方程為故過點的圓的切線方程為或【小問2詳解】解:∵圓心,,即,又,∴,則.18、(1)(2)【解析】(1)設圓D的標準方程,利用待定系數(shù)法即可得出答案;(2)利用圓的弦長公式即可得出答案.【小問1詳解】解:設圓D的標準方程,由題意可得,解得,所以圓D標準方程為;【小問2詳解】解:由(1)可知圓心,半徑,所以圓心D(1,0)到直線l:的距離,所以.19、(1);(2).【解析】(1)設圓的方程為:,由已知列出方程組,解之可得圓的方程;(2)由已知得四邊形的面積為,即有,又有.因此要求的最小值,只需求的最小值即可,根據(jù)點到直線的距離公式可求得答案.【詳解】解:(1)設圓方程為:,根據(jù)題意得,故所求圓M的方程為:;(2)如圖,四邊形的面積為,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即為點到直線的距離所以,四邊形面積的最小值為.20、(1),,,均值為65.6(2)【解析】(1)根據(jù)a,b,c成等比數(shù)列且公比為2,得到a,b,c的關系,利用頻率之和為1,求出a,b,c,估計評分的均值;(2)利用列舉法得到基本事件,求出相應的概率.【小問1詳解】由題意得,,,有,所以,即,解得,于是,評分在40~50,50~60,60~70,70~80,80~90,90~100的概率分別為0.15,0.20,0.30,0.20,0.10,0.05,則均分估計值為【小問2詳解】評分在“50~60”和“80~90”分別有40人和20人則所抽取的6個居民中,評分在“80~90”一組有2人,記為A1,A2,評分在“50~60”一組4人,記為B1,B2,B3,B4從這6人中選取2人的所有基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共15個其中至少有1個評分在“80~90”的基本事件有9個則所求的概率,即抽取的2個居民中至少有1個評分在“80~90”的概率為21、(1)遞減區(qū)間是,單調遞增區(qū)間是,極小值(2)證明見解析(3)【解析】(1)對函數(shù)進行求導通分化簡,求出解得,在列出與在區(qū)間上的表格,即可得到答案.(2)由(1)知,在區(qū)間上的最小值為,因為存在零點,所以,從而.在對進行分類討論,再利用函數(shù)的單調性得出結論.(3)構造函數(shù),在對進行求導,在對進行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋買賣合同的二手房買賣合同
- 購銷學校帳篷合同書
- 行車安全保障函
- 網(wǎng)絡電商合作合同樣本
- 臨時工合同書
- 電力使用安全責任
- 家用中央空調采購合同
- 軟裝材料選購協(xié)議
- 忠誠守護男友的誓言
- 工程分包合同分項工程
- 語 文病句專題講練-2024-2025學年統(tǒng)編版語文七年級上冊
- 第三單元(復習課件)一年級語文上冊(統(tǒng)編版2024秋)
- 2024年大學試題(計算機科學)-數(shù)字圖像處理考試近5年真題集錦(頻考類試題)帶答案
- 文旅深度融合長期發(fā)展規(guī)劃
- ASTM-D3359-(附著力測試標準)-中文版
- 5 協(xié)商決定班級事務 (教學設計)-2024-2025學年道德與法治五年級上冊統(tǒng)編版
- 2024年清潔機器人項目合作計劃書
- 高校實驗室安全通識課學習通超星期末考試答案章節(jié)答案2024年
- 銀行客戶經(jīng)理招聘面試題與參考回答(某大型集團公司)
- 殘疾人體育活動推廣與普及考核試卷
- 《安全系統(tǒng)工程》期末考試卷及答案
評論
0/150
提交評論