2024屆江蘇省江門中學高二上數(shù)學期末調(diào)研試題含解析_第1頁
2024屆江蘇省江門中學高二上數(shù)學期末調(diào)研試題含解析_第2頁
2024屆江蘇省江門中學高二上數(shù)學期末調(diào)研試題含解析_第3頁
2024屆江蘇省江門中學高二上數(shù)學期末調(diào)研試題含解析_第4頁
2024屆江蘇省江門中學高二上數(shù)學期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省江門中學高二上數(shù)學期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等差數(shù)列前項和為,若是方程的兩根,則()A.32 B.30C.28 D.262.直線的傾斜角為()A B.C. D.3.在空間直角坐標系中,若,,則()A. B.C. D.4.若圓與圓外切,則()A. B.C. D.5.為了了解某地區(qū)的名學生的數(shù)學成績,打算從中抽取一個容量為的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需從總體中剔除個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為()A. B.C. D.6.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23則該數(shù)列的第100項為()A.4862 B.4962C.4852 D.49527.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使8.設a,b,c非零實數(shù),且,則()A. B.C. D.9.上海世博會期間,某日13時至21時累計入園人數(shù)的折線圖如圖所示,那么在13時~14時,14時~15時,…,20時~21時八個時段中,入園人數(shù)最多的時段是()A.13時~14時 B.16時~17時C.18時~19時 D.19時~20時10.若函數(shù),當時,平均變化率為3,則等于()A. B.2C.3 D.111.下列直線中,傾斜角為45°的是()A. B.C. D.12.已知點P是圓上一點,則點P到直線的距離的最大值為()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,且,則的最小值為____________14.已知數(shù)列的前4項依次為,,,,則的一個通項公式為________15.已知數(shù)列滿足,,則______.16.高二某位同學參加物理、政治科目的學考,已知這位同學在物理、政治科目考試中得A的概率分別為、,這兩門科目考試成績的結果互不影響,則這位考生至少得1個A的概率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在長方形ABCD中,AD=2AB=2,點E是AD的中點,沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點F,使二面角A-BE-F的余弦值為?若存在,找出點F的位置;若不存在,說明理由.18.(12分)已知拋物線C的方程為:,點(1)若直線與拋物線C相交于A、B兩點,且P為線段AB的中點,求直線的方程.(2)若直線過交拋物線C于M,N兩點,F(xiàn)為拋物線C的焦點,求的最小值19.(12分)如圖,四棱錐中,平面,∥,,,為上一點,平面(Ⅰ)求證:∥平面;(Ⅱ)若,求點D到平面EMC的距離20.(12分)命題存在,使得;命題對任意的,都有(1)若命題p為真時,求實數(shù)a的取值范圍;若命題q為假時,求實數(shù)a的取值范圍;(2)如果命題為真命題,命題為假命題,求實數(shù)a的取值范圍21.(12分)如圖,在棱長為2的正方體中,E,F(xiàn)分別為AB,BC上的動點,且.(1)求證:;(2)當時,求點A到平面的距離.22.(10分)如圖所示,在四棱錐中,底面是正方形,側棱底面,,是的中點,過點作交于點.求證:(1)平面;(2)平面.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)給定條件利用韋達定理結合等差數(shù)列性質(zhì)計算作答.【詳解】因是方程的兩根,則又是等差數(shù)列的前項和,于是得,所以.故選:A2、C【解析】設直線傾斜角為,則,再結合直線的斜率與傾斜角的關系求解即可.【詳解】設直線的傾斜角為,則,∵,所以.故選:C3、B【解析】直接利用空間向量的坐標運算求解.【詳解】解:因為,,所以.故選:B4、C【解析】求得兩圓的圓心坐標和半徑,結合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因為兩圓相外切,可得,解得故選:C.5、D【解析】根據(jù)每個個體被抽取的概率都是相等的、被剔除的概率也都是相等的,分別由剔除的個數(shù)和抽取的樣本容量除以總體個數(shù)即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法可知:每個個體被抽取的概率都是相等的,每個個體被剔除的概率也都是相等的,所以每個個體被剔除的概率為,每個個體被抽取的概率為,故選:D.6、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D7、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結論否定,所以“,使”的否定為“,有”,故選:B.8、C【解析】對于A、B、D:取特殊值否定結論;對于C:利用作差法證明.【詳解】對于A:取符合已知條件,但是不成立.故A錯誤;對于B:取符合已知條件,但是,所以不成立.故B錯誤;對于C:因為,所以.故C正確;對于D:取符合已知條件,但是,所以不成立.故D錯誤;故選:C.9、B【解析】要找入園人數(shù)最多的,只要根據(jù)函數(shù)圖象找出圖象中變化最大的即可【詳解】結合函數(shù)的圖象可知,在13時~14時,14時~15時,…,20時~21時八個時段中,圖象變化最快的為16到17點之間故選:B.【點睛】本題考查折線統(tǒng)計圖的實際應用,屬于基礎題.10、B【解析】直接利用平均變化率的公式求解.【詳解】解:由題得.故選:B11、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線傾斜角為45°,可知直線的斜率為,對于A,直線斜率為,對于B,直線無斜率,對于C,直線斜率,對于D,直線斜率,故選:C12、C【解析】求出圓心到直線的距離,由這個距離加上半徑即得【詳解】由圓,可得圓心坐標,半徑,則圓心C到直線的距離為,所以點P到直線l的距離的最大值為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、16【解析】根據(jù),且,利用“1”的代換將,轉(zhuǎn)化為,再利用基本不等式求解.【詳解】因為,且,所以,當且僅當,,即時,取等號.所以的最小值為16.故答案為:16【點睛】本題主要考查基本不等式求最值,還考查了運算求解的能力,屬于基礎題.14、(答案不唯一)【解析】觀察數(shù)列前幾項,找出規(guī)律即可寫出通項公式.【詳解】根據(jù)數(shù)列前幾項,先不考慮正負,可知,再由奇數(shù)項為負,偶數(shù)項為正,可得到一個通項公式,故答案為:(不唯一)15、1023【解析】由數(shù)列遞推公式求特定項,依次求下去即可解決.【詳解】數(shù)列中,則,,,,,,故答案為:102316、【解析】根據(jù)給定條件利用相互獨立事件、對立事件的概率公式計算作答.【詳解】依題意,這位考生至少得1個A對立事件為物理、政治科目考試都沒有得A,其概率為,所以這位考生至少得1個A的概率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)點F為線段AC的中點【解析】(1)由平面幾何知識證得CE⊥BE,再根據(jù)面面垂直的性質(zhì),線面垂直的判定和性質(zhì)可得證;(2)取BE的中點O,以O為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標系,假設在線段AC上存在點F,設=λ,運用二面角的向量求解方法可求得,可得點F的位置.【小問1詳解】證明:因為在長方形ABCD中,AD=2AB=2,點E是AD的中點,所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問2詳解】解:存在點F,F(xiàn)為線段AC的中點.由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點O,則,又平面ABE⊥平面BCDE,面面,所以面,以O為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標系,如圖所示,取平面ABE的一個法向量為.假設在線段AC上存在點F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當點F為線段AC的中點時,二面角A-BE-F的余弦值為.18、(1)(2)16【解析】(1)設,代入拋物線方程由點差法可得答案;(2)設直線為:,,與拋物線方程聯(lián)立,利用韋達定理和基本不等式可得答案.【小問1詳解】設則,由兩式相減可得:,,即直線的方程為.【小問2詳解】設直線為:,由可得,,,,又因為點坐標為,所以,從而,,所以當且僅當時,有最小值1619、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)運用線面平行的判定定理證明;(Ⅱ)借助體積相等建立方程求解即可【詳解】(Ⅰ)證明:取的中點,連接,因為,所以,又因為平面,所以,所以平面,因為平面,所以∥,面,平面,所以∥平面;(Ⅱ)因為平面,面,所以平面平面,平面平面,過點作直線,則平面,由已知平面,∥,,可得,又,所以為的中點,在中,,在中,,,在中,,由等面積法知,所以,即點D到平面EMC的距離為.考點:直線與平面的位置關系及運用【易錯點晴】本題考查的是空間的直線與平面平行的推證問題和點到直線的距離問題.解答時,證明問題務必要依據(jù)判定定理,因此線面的平行問題一定要在所給的平面中找出一條直線與這個平面外的直線平行,敘述時一定要交代面外的線和面內(nèi)的線,這是許多學生容易忽視的問題,也高考閱卷時最容易扣分的地方,因此在表達時一定要引起注意20、(1)p為真時或,q為假時;(2){或}.【解析】(1)p為真應用判別式求參數(shù)范圍;q為真,根據(jù)恒成立求參數(shù)范圍,再判斷q為假對應的參數(shù)范圍.(2)由題設易得p、q一真一假,討論p、q的真假,結合(1)的結果求a的取值范圍【小問1詳解】若p真,則有實數(shù)根,∴,解得或若q為真,則,即故q為假時,實數(shù)a的取值范圍為【小問2詳解】∵命題真命題,命題為假命題,∴p,q一真一假,當p真q假時,,可得當p假q真時,,可得綜上,實數(shù)a取值范圍為或.21、(1)證明見解析(2)【解析】(1)如圖,以為軸,為軸,為軸建立空間直角坐標系,利用空間向量法分別求出和,再證明即可;(2)利用空間向量的數(shù)量積求出平面的法向量,結合求點到面距離的向量法即可得出結果.【小問1詳解】證明:如圖,以為軸,為軸,為軸,建立空間直角坐標系,則,,,,所以,,所以,故,所以;【小問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論