2024屆浙江省寧波市余姚中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第1頁(yè)
2024屆浙江省寧波市余姚中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第2頁(yè)
2024屆浙江省寧波市余姚中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第3頁(yè)
2024屆浙江省寧波市余姚中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第4頁(yè)
2024屆浙江省寧波市余姚中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆浙江省寧波市余姚中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三棱錐O-ABC,點(diǎn)M,N分別為AB,OC的中點(diǎn),且,用表示,則等于()A. B.C. D.2.已知函數(shù),若對(duì)任意兩個(gè)不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.3.記不超過(guò)x的最大整數(shù)為,如,.已知數(shù)列的通項(xiàng)公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.164.國(guó)際冬奧會(huì)和殘奧會(huì)兩個(gè)奧運(yùn)會(huì)將于2022年在北京召開,這是我國(guó)在2008年成功舉辦夏季奧運(yùn)會(huì)之后的又一奧運(yùn)盛事.某電視臺(tái)計(jì)劃在奧運(yùn)會(huì)期間某段時(shí)間連續(xù)播放5個(gè)廣告,其中3個(gè)不同的商業(yè)廣告和2個(gè)不同的奧運(yùn)宣傳廣告,要求最后播放的必須是奧運(yùn)宣傳廣告,且2個(gè)奧運(yùn)宣傳廣告不能相鄰播放,則不同的播放方式有()A.120種 B.48種C.36種 D.18種5.雙曲線的兩個(gè)焦點(diǎn)為,,雙曲線上一點(diǎn)到的距離為8,則點(diǎn)到的距離為()A.2或12 B.2或18C.18 D.26.已知四棱錐,底面為平行四邊形,分別為,上的點(diǎn),,設(shè),則向量用為基底表示為()A. B.C. D.7.已知實(shí)數(shù)x,y滿足約束條件,則的最大值為()A. B.0C.3 D.58.已知等差數(shù)列的前n項(xiàng)和為,,,若(),則n的值為()A.15 B.14C.13 D.129.已知向量,且,則的值為()A.4 B.2C.3 D.110.定義焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對(duì)相關(guān)曲線.已知,是一對(duì)相關(guān)曲線的焦點(diǎn),Р是這對(duì)相關(guān)曲線在第一象限的交點(diǎn),則點(diǎn)Р與以為直徑的圓的位置關(guān)系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定11.已知雙曲線的一條漸近線方程為,且與橢圓有公共焦點(diǎn).則C的方程為()A. B.C. D.12.已知傾斜角為的直線與雙曲線,相交于,兩點(diǎn),是弦的中點(diǎn),則雙曲線的漸近線的斜率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,已知向量,則的值為__________.14.某校學(xué)生在研究折紙實(shí)驗(yàn)中發(fā)現(xiàn),當(dāng)對(duì)折后紙張達(dá)到一定的厚度時(shí),便不能繼續(xù)對(duì)折了.在理想情況下,對(duì)折次數(shù)與紙的長(zhǎng)邊和厚度有關(guān)系:.現(xiàn)有一張長(zhǎng)邊為30cm,厚度為0.05cm的矩形紙,根據(jù)以上信息,當(dāng)對(duì)折完4次時(shí),的最小值為________;該矩形紙最多能對(duì)折________次.(參考數(shù)值:,)15.已知直線與平行,則___________.16.曲線在點(diǎn)處的切線方程為_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知P,Q的坐標(biāo)分別為,,直線PM,QM相交于點(diǎn)M,且它們的斜率之積是.設(shè)點(diǎn)M的軌跡為曲線C.(1)求曲線的方程;(2)設(shè)為坐標(biāo)原點(diǎn),圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點(diǎn)A,B.當(dāng),且滿足時(shí),求面積的取值范圍.18.(12分)在①,②,③這三個(gè)條件中任選一個(gè)補(bǔ)充在下面問(wèn)題中,并解答下列題目設(shè)首項(xiàng)為2的數(shù)列的前n項(xiàng)和為,前n項(xiàng)積為,且______(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列的前n項(xiàng)和為,令,求數(shù)列的前n項(xiàng)和19.(12分)已知拋物線C:,經(jīng)過(guò)的直線與拋物線C交于A,B兩點(diǎn)(1)求的值(其中為坐標(biāo)原點(diǎn));(2)設(shè)F為拋物線C的焦點(diǎn),直線為拋物線C的準(zhǔn)線,直線是拋物線C的通徑所在的直線,過(guò)C上一點(diǎn)P()()作直線與拋物線相切,若直線與直線相交于點(diǎn)M,與直線相交于點(diǎn)N,證明:點(diǎn)P在拋物線C上移動(dòng)時(shí),恒為定值,并求出此定值20.(12分)已知點(diǎn),(1)若過(guò)點(diǎn)P作的切線只有一條,求實(shí)數(shù)的值及切線方程;(2)過(guò)點(diǎn)P作斜率為1的直線l與相交于M,N兩點(diǎn),當(dāng)面積最大時(shí),求實(shí)數(shù)的值21.(12分)已知是邊長(zhǎng)為2的正方形,正方形繞旋轉(zhuǎn)形成一個(gè)圓柱;(1)求該圓柱的表面積;(2)正方形繞順時(shí)針旋轉(zhuǎn)至,求異面直線與所成角的大小22.(10分)如圖所示,四棱錐的底面為矩形,,,過(guò)底面對(duì)角線作與平行的平面交于點(diǎn)(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運(yùn)算可得結(jié)果.【詳解】.故選:D2、A【解析】將已知條件轉(zhuǎn)化為時(shí)恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對(duì)任意都有恒成立,則時(shí),,當(dāng)時(shí)恒成立,

,當(dāng)時(shí)恒成立,,故選:A3、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當(dāng)時(shí),,使的正整數(shù)n的最大值為,故選:C4、C【解析】先考慮最后位置必為奧運(yùn)宣傳廣告,再將另一奧運(yùn)廣告插入3個(gè)商業(yè)廣告之間,最后對(duì)三個(gè)商業(yè)廣告全排列,即可求解.【詳解】先考慮最后位置必為奧運(yùn)宣傳廣告,有種,另一奧運(yùn)廣告插入3個(gè)商業(yè)廣告之間,有種;再考慮3個(gè)商業(yè)廣告的順序,有種,故共有種.故選:C.5、C【解析】利用雙曲線的定義求.【詳解】解:由雙曲線定義可知:解得或(舍)∴點(diǎn)到的距離為18,故選:C.6、D【解析】通過(guò)尋找封閉的三角形,將相關(guān)向量一步步用基底表示即可.【詳解】.故選:D7、D【解析】先畫出可行域,由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,求出點(diǎn)A的坐標(biāo),代入可求得結(jié)果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,由,得,即,所以的最大值為,故選:D8、B【解析】由已知條件列方程組求出,再由列方程求n的值【詳解】設(shè)等差數(shù)列的公差為,則由,,得,解得,因?yàn)?,所以,即,解得或(舍去),故選:B9、A【解析】由題意可得,利用空間向量數(shù)量積的坐標(biāo)表示列方程,解方程即可求解.【詳解】因?yàn)?,所以,因?yàn)橄蛄浚?,所以,解得,所以的值為,故選:A.10、A【解析】設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,根據(jù)題意可得,設(shè),根據(jù)橢圓與雙曲線的定義將分別用表示,設(shè),再根據(jù)兩點(diǎn)的距離公式將點(diǎn)的坐標(biāo)用表示,從而可判斷出點(diǎn)與圓的位置關(guān)系.【詳解】解:設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,設(shè)橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設(shè),則有,所以,設(shè),,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點(diǎn)到圓心的距離為,所以點(diǎn)Р在以為直徑的圓外.故選:A.11、B【解析】根據(jù)已知和漸近線方程可得,雙曲線焦距,結(jié)合的關(guān)系,即可求出結(jié)論.【詳解】因?yàn)殡p曲線的一條漸近線方程為,則①.又因?yàn)闄E圓與雙曲線有公共焦點(diǎn),雙曲線的焦距,即c=3,則a2+b2=c2=9②.由①②解得a=2,b=,則雙曲線C的方程為.故選:B.12、A【解析】依據(jù)點(diǎn)差法即可求得的關(guān)系,進(jìn)而即可得到雙曲線的漸近線的斜率.【詳解】設(shè),則由,可得則,即,則則雙曲線的漸近線的斜率為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題知,進(jìn)而根據(jù)向量數(shù)量積運(yùn)算的坐標(biāo)表示求解即可.【詳解】解:因?yàn)橄蛄浚?,所以故答案為?4、①.64②.6【解析】利用即可求解,利用和換底公式進(jìn)行求解.【詳解】令,則,則,即,即當(dāng)對(duì)折完4次時(shí),最小值為;由題意,得,,則,所以該矩形紙最多能對(duì)折6次.故答案為:64,6.15、【解析】根據(jù)平行可得斜率相等列出關(guān)于參數(shù)的方程,解方程進(jìn)行檢驗(yàn)即可求解.【詳解】因?yàn)橹本€與平行,所以,解得或,又因?yàn)闀r(shí),,,所以直線,重合故舍去,而,,,所以兩直線平行.所以,故答案為:3.【點(diǎn)睛】(1)當(dāng)直線的方程中存在字母參數(shù)時(shí),不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時(shí)還要注意x,y的系數(shù)不能同時(shí)為零這一隱含條件(2)在判斷兩直線平行、垂直時(shí),也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論16、.【解析】由求導(dǎo)公式求出導(dǎo)數(shù),再把代入求出切線的斜率,代入點(diǎn)式方程化為一般式即可.【詳解】由題意得,∴在點(diǎn)處的切線的斜率是,則在點(diǎn)處的切線方程是,即.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義.注意區(qū)分“在某點(diǎn)處的切線”與“過(guò)某點(diǎn)的切線”,前者“某點(diǎn)”是切點(diǎn),后者“某點(diǎn)”不一定是切點(diǎn).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】【小問(wèn)1詳解】設(shè)點(diǎn),則,整理得曲線的方程:【小問(wèn)2詳解】因?yàn)閳A的半徑為1,直線:與圓相切,則,,設(shè),將代入得,,,,,所以,,因?yàn)?,令,在上單調(diào)減,,所以18、(1);(2).【解析】(1)選擇不同的條件,再通過(guò)構(gòu)造數(shù)列以及累乘法即可求得對(duì)應(yīng)情況下的通項(xiàng)公式;(2)根據(jù)(1)中所求,求得,再利用錯(cuò)位相減法求其前項(xiàng)和即可.【小問(wèn)1詳解】選①:∵,即,∴.即,∴數(shù)列是常數(shù)列,∴,故;選②:∵,∴時(shí),,則,即∴,∴;當(dāng)時(shí),也滿足,∴;選③:得,所以數(shù)列是等差數(shù)列,首項(xiàng)為2,公差為1則,∴.【小問(wèn)2詳解】由(1)知當(dāng)時(shí),,∴又∵時(shí),,符合上式,∴∴∴而相減得∴.19、(1)(2)證明見解析,定值為【解析】(1)設(shè)出直線的方程并與拋物線方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系求得.(2)求得過(guò)點(diǎn)的拋物線的切線方程,由此求得兩點(diǎn)的坐標(biāo),通過(guò)化簡(jiǎn)來(lái)證得為定值,并求得定值.【小問(wèn)1詳解】依題意可知直線的斜率不為零,設(shè)直線的方程為,設(shè),,消去并化簡(jiǎn)得,所以,所以.小問(wèn)2詳解】拋物線方程為,焦點(diǎn)坐標(biāo)為,準(zhǔn)線,通徑所在直線,在拋物線上,且,所以過(guò)點(diǎn)的拋物線的切線的斜率存在且不為零,設(shè)過(guò)點(diǎn)的切線方程為,由消去并化簡(jiǎn)得,,將代入上式并化簡(jiǎn)得,解得,所以切線方程為,令得,令得,,將代入上式并化簡(jiǎn)得,所以為定值,且定值為.20、(1);當(dāng)時(shí),切線方程為;當(dāng)時(shí),切線方程為;(2)或【解析】(1)根據(jù)題意可知P在圓上,據(jù)此即可求t和切線方程;(2)的面積,則當(dāng)面積最大時(shí),.即,據(jù)此即可求出圓心O到直線l的距離,即可求出t的數(shù)值.【小問(wèn)1詳解】由題意得點(diǎn)在上,∴,,①當(dāng)時(shí),切點(diǎn),直線OP的斜率,切線斜率,切線方程為,即②當(dāng)時(shí),切點(diǎn),直線OP的斜率,切線斜率,切線方程,即【小問(wèn)2詳解】∵的面積,則當(dāng)面積最大時(shí),.即,則圓心O到直線l距離又直線,即,則,解之得或注:亦可設(shè)圓心O到直線l的距離為d,則的面積,當(dāng)且僅當(dāng),即時(shí)取等號(hào)(下同)21、(1)(2)【解析】(1)利用表面積公式直接計(jì)算得到答案.(2)連接和,,故即為異面直線與所成角,證明,根據(jù)長(zhǎng)度關(guān)系得到答案.【小問(wèn)1詳解】【小問(wèn)2詳解】如圖所示:連接和,,故即為異面直線與所成角,,,,故平面,平面,故,,故,直角中,,,,故異面直線與所成角的大小為.22、(1);(2);(3).【解析】(1)設(shè),連接、,證明出平面,推導(dǎo)出為的中點(diǎn),然后以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論