




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市知春里中學2023-2024學年數(shù)學高二上期末教學質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,,,則的取值范圍是()A. B.C. D.2.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點,則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°3.如圖,雙曲線的左,右焦點分別為,,過作直線與C及其漸近線分別交于Q,P兩點,且Q為的中點.若等腰三角形的底邊的長等于C的半焦距.則C的離心率為()A. B.C. D.4.我們知道,償還銀行貸款時,“等額本金還款法”是一種很常見的還款方式,其本質是將本金平均分配到每一期進行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個月還一次款,20年還清,貸款月利率為,設張華第個月的還款金額為元,則()A.2192 B.C. D.5.當時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.6.已知全集,,()A. B.C. D.7.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B.C. D.8.執(zhí)行如圖所示的程序框圖,若輸出的,則輸人的()A. B.或C. D.或9.已知F1(-5,0),F(xiàn)2(5,0),動點P滿足|PF1|-|PF2|=2a,當a為3和5時,點P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線10.意大利數(shù)學家斐波那契,以兔子繁殖為例,引入“兔子數(shù)列”,,,,,,,,…,在實際生活中很多花朵的瓣數(shù)恰是斐波那契數(shù)列中的數(shù),斐波那契數(shù)列在物理化學等領域也有著廣泛的應用.已知斐波那契數(shù)列滿足:,,,若,則等于()A. B.C. D.11.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.12.若拋物線的焦點與橢圓的下焦點重合,則m的值為()A.4 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點為圓上的一個動點,則點到直線距離的最大值為________14.設F為拋物線C:的焦點,過F且傾斜角為30°的直線交C于A,B兩點,O為坐標原點,則的面積為______.15.萊昂哈德·歐拉于1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的重心、垂心和外心共線.后來人們稱這條直線為該三角形的歐拉線.已知的三個頂點坐標分別是,,,則的垂心坐標為______,的歐拉線方程為______16.傳說古希臘畢達哥拉斯學派的數(shù)學家用沙粒和小石子來研究數(shù).他們根據沙?;蛐∈铀帕械男螤畎褦?shù)分成許多類,下圖中第一行的稱為三角形數(shù),第二行的稱為五邊形數(shù),則三角形數(shù)的第10項為__________,五邊形數(shù)的第項為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某種機械設備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設備的使用年限(單位:年)與失效費(單位:萬元)的統(tǒng)計數(shù)據如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據可知,可用線性回歸模型擬合與關系.請用相關系數(shù)加以說明;(精確到0.01)(2)求出關于的線性回歸方程,并估算該種機械設備使用8年的失效費參考公式:相關系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據:,,18.(12分)如圖,在空間直角坐標系中有長方體,且,,點E在棱AB上移動.(1)證明:;(2)當E為AB的中點時,求直線AC與平面所成角的正弦值.19.(12分)已知拋物線C:,直線l經過點,且與拋物線C交于M,N兩點,其中.(1)若,且,求點M的坐標;(2)是否存在正數(shù)m,使得以MN為直徑的圓經過坐標原點O,若存在,請求出正數(shù)m,若不存在,請說明理由.20.(12分)某校高三年級進行了一次數(shù)學測試,全年級學生的成績都落在區(qū)間內,其成績的頻率分布直方圖如圖所示,若(1)求a,b的值;(2)若成績落在區(qū)間內的人數(shù)為36人,請估計該校高三學生的人數(shù)21.(12分)要設計一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設計才能使得總成本最低?22.(10分)已知(1)若函數(shù)在上有極值,求實數(shù)a的取值范圍;(2)已知方程有兩個不等實根,證明:(注:是自然對數(shù)的底數(shù))
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據題設可得關于的不等式,從而可求的取值范圍.【詳解】設公差為,因為,,所以,即,從而.故選:A.2、B【解析】取AD中點為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補角,據此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補角,當∠EGF=60°時,∠FEG=60°,當∠EGF=120°時,∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B3、C【解析】先根據等腰三角形的性質得,再根據雙曲線定義以及勾股定理列方程,解得離心率.【詳解】連接,由為等腰三角形且Q為的中點,得,由知.由雙曲線的定義知,在中,,(負值舍去)故選:C【點睛】本題考查雙曲線的定義、雙曲線的離心率,考查基本分析求解能力,屬基礎題.4、D【解析】計算出每月應還的本金數(shù),再計算第n個月已還多少本金,由此可計算出個月的還款金額.【詳解】由題意可知:每月還本金為2000元,設張華第個月的還款金額為元,則,故選:D5、A【解析】設,對實數(shù)的取值進行分類討論,求得,解不等式,綜合可得出實數(shù)的取值范圍.【詳解】設,其中.①當時,即當時,函數(shù)在區(qū)間上單調遞增,則,解得,此時不存在;②當時,,解得;③當時,即當時,函數(shù)在區(qū)間上單調遞減,則,解得,此時不存在.綜上所述,實數(shù)的取值范圍是.故選:A.6、C【解析】根據條件可得,則,結合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C7、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎題.8、A【解析】根據題意可知該程序框圖顯示的算法函數(shù)為,分和兩種情況討論即可得解.【詳解】解:該程序框圖顯示得算法函數(shù)為,由,當時,,方程無解;當時,,解得,綜上,若輸出的,則輸入的.故選:A.9、D【解析】由雙曲線定義結合參數(shù)a的取值分類討論而得.【詳解】依題意得,當時,,且,點P的軌跡為雙曲線的右支;當時,,故點P的軌跡為一條射線.故選D.故選:D10、A【解析】利用可化簡得,由此可得.【詳解】由得:,,即.故選:A.11、D【解析】根據拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數(shù)法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設為:則準線方程為:解得:則拋物線的標準方程為:故選:D12、D【解析】求出橢圓的下焦點,即拋物線的焦點,即可得解.【詳解】解:橢圓的下焦點為,即為拋物線焦點,∴,∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】根據給定條件求出圓C的圓心C到直線l的距離即可計算作答.【詳解】圓的圓心,半徑,點C到直線的距離,所以圓C上點P到直線l距離的最大值為.故答案為:714、##2.25##【解析】求出直線的方程,與拋物線方程聯(lián)立后得到兩根之和,結合焦點弦弦長公式求出,用點到直線距離公式求高,進而求出三角形面積.【詳解】易知拋物線中,焦點,直線的斜率,故直線的方程為,代人拋物線方程,整理得.設,則,由拋物線的定義可得弦長,原點到直線的距離,所以面積.故答案為:15、①.##(0,1.5)②.【解析】由高線聯(lián)立可得垂心,由垂心與重心可得歐拉線方程.【詳解】由,可知邊上的高所在的直線為,又,因此邊上的高所在的直線的斜率為,所以邊上的高所在的直線為:,即,所以,所以的垂心坐標為,由重心坐標公式可得的重心坐標為,所以的歐拉線方程為:,化簡得.故答案為:;16、①.②.【解析】對于三角形數(shù),根據圖形尋找前后之間的關系,從而歸納出規(guī)律利用求和公式即得,對于五邊形數(shù)根據圖形尋找前后之間的關系,然后利用累加法可得通項公式.【詳解】由題可知三角形數(shù)的第1項為1,第2項為3=1+2,第3項為6=1+2+3,第4項為10=1+2+3+4,,因此,第10項為;五邊形數(shù)的第1項為,第2項為,第3項為,第4項為,…,因此,,所以當時,,當時也適合,故,即五邊形數(shù)的第項為.故答案為:55;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2);失效費為6.3萬元【解析】(1)根據相關系數(shù)公式計算出相關系數(shù)可得結果;(2)根據公式求出和可得關于的線性回歸方程,再代入可求出結果.【詳解】(1)由題意,知,,∴結合參考數(shù)據知:因為與的相關系數(shù)近似為0.99,所以與的線性相關程度相當大,從而可以用線性回歸模型擬合與的關系(2)∵,∴∴關于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機械設備使用8年的失效費為6.3萬元18、(1)證明見解析(2)【解析】(1)設,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直線與平面所成角的正弦值【小問1詳解】證明:設,,,,;【小問2詳解】當為的中點時,,,設平面的法向量,則,取,得,設直線與平面所成角為,則直線與平面所成角的正弦值為:19、(1)或(2)存在,【解析】(1)確定點為拋物線的焦點,則根據拋物線的焦半徑公式,結合拋物線方程,求得答案;(2)假設存在正數(shù)m,使得以MN為直徑的圓經過坐標原點O,可推得,由此可設直線方程,聯(lián)立拋物線方程,利用根與系數(shù)的關系,代入到中,可得結論.【小問1詳解】依題意得為的焦點,故,解得,故,則∴點的坐標或;【小問2詳解】假設存在正數(shù),使得以為直徑的圓經過坐標原點,∴,設直線:,,,由,得,則,,∵,,∴,解得或(舍去)所以存在正數(shù),使得以為直徑的圓經過坐標原點.20、(1)(2)人【解析】(1)由頻率分布直方圖的性質求得,結合,即可求得的值;(2)由頻率分布直方圖求得落在區(qū)間內的概率,進而求得該校高三年級的人數(shù)【小問1詳解】解:由頻率分布直方圖的性質,可得:,可得,又由,可得解得;【小問2詳解】解:由頻率分布直方圖可得,成績落在區(qū)間內的概率為,則該校高三年級的人數(shù)為(人)21、當圓柱底面半徑為,高為時,總成本最底.【解析】設圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進而根據體積得到,然后求出表面積,進而運用導數(shù)的方法求得表面積的最小值,此時成本最小.【詳解】設圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調遞減區(qū)間為,遞增區(qū)間為,當圓柱底面半徑為,高為時,總成本最底.22、(1)(2)證明見解析.【解析】(1)利用導數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實數(shù)a的取值范圍;(2)記函數(shù),把證明,轉化為只需證明,用分析法證明即可.【小問1詳解】,定義域為,.令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實數(shù)a的取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司老年黨出游活動方案
- 公司秋季踏青活動方案
- 公司景區(qū)旅游活動方案
- 公司管理沙龍策劃方案
- 2025年信息系統(tǒng)與信息管理考試題及答案
- 2025年維護工程師職稱資格考試試題及答案
- 2025年現(xiàn)代信息技術在教育中的應用考試試題及答案
- 2025年新聞傳播專業(yè)基礎知識考試試卷及答案
- 2025年物理實驗技能考試試題及答案
- 2025年健身與體育專業(yè)知識與實務考試試題及答案
- DB11-T 2010-2022 救災物資儲備管理規(guī)范
- 注水泵工(中級)技能鑒定理論考試題及答案
- 2023春國開精益生產終考題庫及答案
- 4.1中國特色社會主義進入新時代 課件高中政治統(tǒng)編版必修一中國特色社會主義-3
- 安徽省秸稈資源潛力和綜合利用現(xiàn)狀分析
- 保潔服務 投標方案(技術標)
- 2024年國企采購商品房合同模板
- 湖南省長沙2024年七年級下冊生物期末試卷附答案
- 新材料產業(yè)研發(fā)與產業(yè)化應用實施方案案
- 2024年小學四年級下冊數(shù)學期末測試卷附完整答案【典優(yōu)】
- 養(yǎng)老院老人走失免責協(xié)議書
評論
0/150
提交評論