北京東城區(qū)北京匯文中學2023-2024學年高二數學第一學期期末質量檢測試題含解析_第1頁
北京東城區(qū)北京匯文中學2023-2024學年高二數學第一學期期末質量檢測試題含解析_第2頁
北京東城區(qū)北京匯文中學2023-2024學年高二數學第一學期期末質量檢測試題含解析_第3頁
北京東城區(qū)北京匯文中學2023-2024學年高二數學第一學期期末質量檢測試題含解析_第4頁
北京東城區(qū)北京匯文中學2023-2024學年高二數學第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京東城區(qū)北京匯文中學2023-2024學年高二數學第一學期期末質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知E、F分別為橢圓的左、右焦點,傾斜角為的直線l過點E,且與橢圓交于A,B兩點,則的周長為A.10 B.12C.16 D.202.已知橢圓的長軸長是短軸長的倍,左焦點、右頂點和下頂點分別為,坐標原點到直線的距離為,則的面積為()A. B.4C. D.3.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.4.已知拋物線的焦點為,過點且傾斜角為銳角的直線與交于、兩點,過線段的中點且垂直于的直線與的準線交于點,若,則的斜率為()A. B.C. D.5.若方程表示圓,則實數m的取值范圍為()A B.C. D.6.設是函數的導函數,的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.7.在空間四邊形中,,,,且,則()A. B.C. D.8.設分別是橢圓的左、右焦點,P是C上的點,則的周長為()A.13 B.16C.20 D.9.中國農歷的二十四節(jié)氣是中華民族的智慧與傳統(tǒng)文化的結晶,二十四節(jié)氣歌是以春、夏、秋、冬開始的四句詩.在國際氣象界,二十四節(jié)氣被譽為“中國的第五大發(fā)明”.2016年11月30日,二十四節(jié)氣被正式列入聯(lián)合國教科文組織人類非物質文化遺產代表作名錄.某小學三年級共有學生600名,隨機抽查100名學生并提問二十四節(jié)氣歌,只能說出一句的有45人,能說出兩句及以上的有38人,據此估計該校三年級的600名學生中,對二十四節(jié)氣歌一句也說不出的有()A.17人 B.83人C.102人 D.115人10.在平面內,A,B是兩個定點,C是動點,若,則點C的軌跡為()A.圓 B.橢圓C.拋物線 D.直線11.某社區(qū)醫(yī)院為了了解社區(qū)老人與兒童每月患感冒的人數y(人)與月平均氣溫x(℃)之間的關系,隨機統(tǒng)計了某4個月的患?。ǜ忻埃┤藬蹬c當月平均氣溫,其數據如下表:月平均氣溫x(℃)171382月患病y(人)24334055由表中數據算出線性回歸方程中的,氣象部門預測下個月的平均氣溫約為9℃,據此估計該社區(qū)下個月老年人與兒童患病人數約為()A.38 B.40C.46 D.5812.設變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.13二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______14.在數列中,若,則該數列的通項公式__________15.將一枚質地均勻的骰子,先后拋擲次,則出現(xiàn)向上的點數之和為的概率是________.16.函數的圖象在處的切線方程為,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足(1)證明:數列為等差數列,并求數列的通項公式;(2)設,求數列的前n項和18.(12分)在等差數列中,,前10項和(1)求列通項公式;(2)若數列是首項為1,公比為2的等比數列,求的前8項和19.(12分)在等差數列{an}中,a3+a4=15,a2a5=54,公差d<0.(1)求數列{an}的通項公式an;(2)求數列的前n項和Sn的最大值及相應的n值20.(12分)在中,a,b,c分別是內角A,B,C的對邊,滿足.(1)求A;(2)若,求面積的最大值.21.(12分)已知橢圓長軸長為4,A,B分別為左、右頂點,P為橢圓上不同于A,B的動點,且點在橢圓上,其中e為橢圓的離心率(1)求橢圓的標準方程;(2)直線AP與直線(m為常數)交于點Q,①當時,設直線OQ的斜率為,直線BP的斜率為.求證:為定值;②過Q與PB垂直的直線l是否過定點?如果是,請求出定點坐標;如果不是,請說明理由22.(10分)阿基米德(公元前年—公元前年)不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸與短半軸的乘積.已知平面直角坐標系中,橢圓:的面積為,兩焦點與短軸的一個頂點構成等邊三角形.(1)求橢圓的標準方程;(2)過點的直線與交于不同的兩點,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用橢圓的定義即可得到結果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點睛】本題考查橢圓簡單性質的應用,橢圓的定義的應用,三角形的周長的求法,屬于基本知識的考查2、C【解析】設,根據題意,可知的方程為直線,根據原點到直線的距離建立方程,求出,進而求出,的值,以及到直線的距離,再根據面積公式,即可求出結果.【詳解】設,由題意可知,其中,所以的方程為,即所以原點到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.3、D【解析】由題設可得求出橢圓參數,即可得方程.【詳解】由題設,知:,可得,則,∴C的方程為.故選:D.4、C【解析】設直線的方程為,其中,設點、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,求出、,根據條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點為,設直線的方程為,其中,設點、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因為,則,因為,解得,因此,直線的斜率為.故選:C.5、D【解析】根據,解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實數m的取值范圍為.故選:D6、C【解析】利用導函數的圖象,判斷導函數的符號,得到函數的單調性以及函數的極值點,然后判斷選項即可【詳解】解:由題意可知:和時,,函數是增函數,時,,函數是減函數;是函數的極大值點,是函數的極小值點;所以函數的圖象只能是故選:C7、A【解析】利用空間向量的線性運算即可求解.【詳解】..故選:A.8、B【解析】利用橢圓的定義及即可得到答案.【詳解】由橢圓的定義,,焦距,所以的周長為.故選:B9、C【解析】根據頻率計算出正確答案.【詳解】一句也說不出的學生頻率為,所以估計名學生中,一句也說不出的有人.故選:C10、A【解析】首先建立平面直角坐標系,然后結合數量積定義求解其軌跡方程即可.【詳解】設,以AB中點為坐標原點建立如圖所示的平面直角坐標系,則:,設,可得:,從而:,結合題意可得:,整理可得:,即點C的軌跡是以AB中點為圓心,為半徑的圓.故選:A.【點睛】本題主要考查平面向量及其數量積的坐標運算,軌跡方程的求解等知識,意在考查學生的轉化能力和計算求解能力.11、B【解析】由表格數據求樣本中心,根據線性回歸方程過樣本中心點,將點代入方程求參數,寫出回歸方程,進而估計下個月老年人與兒童患病人數.【詳解】由表格得為,由回歸方程中的,∴,解得,即,當時,.故選:B.12、C【解析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點時截距最小,求出點A坐標,代入目標式即可.【詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點時截距最小,由,得,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,設,根據求出,再由空間向量的數量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,不妨設,則,,,由,即,解得,所以,故,設為平面ACQ的一個法向量,因為,,由,即,所以,設直線AP與平面ACQ所成角為,則.故答案為:14、【解析】由已知可得數列是以為首項,3為公比的等比數列,結合等比數列通項公式即可得解.【詳解】解:由在數列中,若,則數列是以為首項,為公比的等比數列,由等比數列通項公式可得,故答案為:.【點睛】本題考查了等比數列通項公式的求法,重點考查了運算能力,屬基礎題.15、【解析】將向上的點數記作,先計算出所有的基本事件數,并列舉出事件“出現(xiàn)向上的點數之和為”所包含的基本事件,然后利用古典概型的概率公式可計算出所求事件的概率.【詳解】將骰子先后拋擲次,出現(xiàn)向上的點數記作,則基本事件數為,向上的點數之和為這一事件記為,則事件所包含的基本事件有:、、,共個基本事件,因此,.故答案為:.【點睛】本題考查利用古典概型的概率公式計算概率,解題時一般要列舉出相應的基本事件,遵循不重不漏的基本原則,考查計算能力,屬于基礎題.16、【解析】根據導數的幾何意義可得,根據切點在切線上可得.【詳解】因為切線的斜率為,所以,又切點在切線上,所以,所以,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】(1)由得是公差為2的等差數列,再由可得答案.(2),分為奇數、偶數,分組求和即可求解.【小問1詳解】由,得,故是公差為2的等差數列,故,由,故,于是.【小問2詳解】依題意,,當為偶數時,故,當為奇數時,,綜上,.18、(1);(2)347.【解析】(1)設等差數列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設等差數列的公差為,則解得所以(2)由題意,,所以所以的前8項和為19、(1);(2)當或11時,最大值為55.【解析】(1)根據等差數列的通項公式得方程組,解這個方程組得公差和首項,從而得數列的通項公式n.(2)等差數列的前項和是關于的二次式,將這個二次式配方即可得最大值.【詳解】(1)由題設,故(舍,此時)或.故,故.(2)由(1)可得,因為,對稱方程為,故當或時,取最大值,此時最大值為.20、(1)(2)【解析】(1)由正弦定理得,再由范圍可得答案;(2)由余弦定理和基本不等式可得,再由面積公式可得答案.【小問1詳解】∵,由正弦定理得,又,所以,又,則;【小問2詳解】由余弦定理得,即,所以,當且僅當,取“=”,所以面積的最大值為21、(1)(2)①證明見解析;②直線過定點;【解析】(1)依題意得到方程組,解得,即可求出橢圓方程;(2)①由(1)可得,,設,,表示出直線的方程,即可求出點坐標,從而得到、,即可求出;②在直線方程中令,即可得到的坐標,再求出直線的斜率,即可得到直線的方程,從而求出定點坐標;【小問1詳解】解:依題意可得,即,解得或(舍去),所以,所以橢圓方程為【小問2詳解】解:①由(1)可得,,設,,則直線的方程為,令則,所以,,所以,又點在橢圓上,所以,即,所以,即為定值;②因為直線的方程為,令則,因為,所以,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論