版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市豐臺(tái)區(qū)北京十二中2023-2024學(xué)年數(shù)學(xué)高二上期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集,集合,則()A. B.C. D.2.如果橢圓的弦被點(diǎn)平分,那么這條弦所在的直線的方程是()A. B.C. D.3.點(diǎn)分別為橢圓左右兩個(gè)焦點(diǎn),過的直線交橢圓與兩點(diǎn),則的周長(zhǎng)為()A.32 B.16C.8 D.44.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?35.命題“,都有”的否定為()A.,使得 B.,使得C.,使得 D.,使得6.在等差數(shù)列中,,則()A.6 B.3C.2 D.17.在數(shù)列中,,則等于A. B.C. D.8.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.9.已知曲線,則曲線W上的點(diǎn)到原點(diǎn)距離的最小值是()A. B.C. D.10.若在直線上,則直線的一個(gè)方向向量為()A. B.C. D.11.已知點(diǎn)是拋物線上的動(dòng)點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,則的最小值為()A. B.C. D.12.將一個(gè)表面積為的球用一個(gè)正方體盒子裝起來,則這個(gè)正方體盒子的最小體積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點(diǎn)分別為、,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)A、B在橢圓上,且滿足,若令且,則該橢圓離心率的取值范圍為___________14.過點(diǎn)作圓的切線,則切線方程為______.15.已知函數(shù)若存在,使得成立,則實(shí)數(shù)的取值范圍是_______________16.已知函數(shù)有三個(gè)零點(diǎn),則正實(shí)數(shù)a的取值范圍為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標(biāo)原點(diǎn),橢圓:的左、右焦點(diǎn)分別為,,右頂點(diǎn)為,上頂點(diǎn)為,若,,成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值為求橢圓的標(biāo)準(zhǔn)方程;過該橢圓的右焦點(diǎn)作兩條互相垂直的弦與,求的取值范圍18.(12分)已知圓,直線(1)判斷直線l與圓C的位置關(guān)系;(2)過點(diǎn)作圓C的切線,求切線的方程19.(12分)已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,過點(diǎn)的直線與拋物線只有一個(gè)公共點(diǎn).(1)求拋物線的方程;(2)求直線的方程.20.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,求的最小值及此時(shí)的值.21.(12分)已知數(shù)列,,,為其前n項(xiàng)和,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和22.(10分)阿基米德(公元前287年---公元前212年,古希臘)不僅是著名的哲學(xué)家、物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.在平面直角坐標(biāo)系中,橢圓的面積等于,且橢圓的焦距為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)點(diǎn)是軸上的定點(diǎn),直線與橢圓交于不同的兩點(diǎn),已知A關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,已知三點(diǎn)共線,試探究直線是否過定點(diǎn).若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意先求出,再利用交集定義即可求解.【詳解】全集,集合,則,故故選:B2、B【解析】設(shè)該弦所在直線與橢圓的兩個(gè)交點(diǎn)分別為,,則,利用點(diǎn)差法可得答案.【詳解】設(shè)該弦所在直線與橢圓的兩個(gè)交點(diǎn)分別為,,則因?yàn)?,兩式相減可得,,即由中點(diǎn)公式可得,所以,即,所以AB所在直線方程為,即故選:B3、B【解析】由題意結(jié)合橢圓的定義可得,而的周長(zhǎng)等于,從而可得答案【詳解】解:由得,由題意得,所以的周長(zhǎng)等于,故選:B4、B【解析】先畫出可行域,由,得,作出直線,過點(diǎn)時(shí),取得最大值,求出點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點(diǎn)時(shí),取得最大值,由,得,即,所以的最大值為,故選:B5、A【解析】根據(jù)命題的否定的定義判斷【詳解】全稱命題的否定是特稱命題,命題“,都有”的否定為:,使得故選:A6、B【解析】根據(jù)等差數(shù)列下標(biāo)性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑炔顢?shù)列,所以,故選:B7、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點(diǎn)睛:對(duì)于含有的數(shù)列,我們看作擺動(dòng)數(shù)列,往往逐一列舉出來觀察前面有限項(xiàng)的規(guī)律8、A【解析】求出函數(shù)圖象的對(duì)稱中心,結(jié)合函數(shù)圖象平移變換可得結(jié)果.【詳解】因?yàn)椋?,,所以,函?shù)圖象的對(duì)稱中心為,將函數(shù)的圖象向右平移個(gè)單位,再將所得圖象向下平移個(gè)單位長(zhǎng)度,可得到奇函數(shù)的圖象,即函數(shù)為奇函數(shù).故選:A9、A【解析】化簡(jiǎn)方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點(diǎn)距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點(diǎn)與點(diǎn)或的距離最小,且為故選:A10、D【解析】由題意可得首先求出直線上的一個(gè)向量,即可得到它的一個(gè)方向向量,再利用平面向量共線(平行)的坐標(biāo)表示即可得出答案【詳解】∵在直線上,∴直線的一個(gè)方向向量,又∵,∴是直線的一個(gè)方向向量故選:D11、C【解析】分析可知圓的圓心為拋物線的焦點(diǎn),可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,由圓的圓心坐標(biāo)為,是拋物線的焦點(diǎn)坐標(biāo),有,由圓的幾何性質(zhì)可得,又由,可得的最小值為故選:C.12、C【解析】求出球的半徑,要使這個(gè)正方形盒子的體積最小,則這個(gè)正方體正好是該球的外切正方體,所以正方體的棱長(zhǎng)等于球的直徑,從而可得出答案.【詳解】解:設(shè)球的半徑為,則,得,故該球的半徑為11cm,若要使這個(gè)正方形盒子的體積最小,則這個(gè)正方體正好是該球的外切正方體,所以正方體的棱長(zhǎng)等于球的直徑,即22cm,所以這個(gè)正方體盒子的最小體積為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由得為矩形,則,故,結(jié)合正弦函數(shù)即可求得范圍【詳解】由已知可得,且四邊形為矩形所以,又因?yàn)?,所以得離心率因?yàn)椋?,可得,從而故答案為?4、【解析】求出切點(diǎn)與圓心連線的斜率后可得切線方程.【詳解】因?yàn)辄c(diǎn)在圓上,故切線必垂直于切點(diǎn)與圓心連線,而切點(diǎn)與圓心連線的斜率為,故切線的斜率為,故切線方程為:即.故答案為:.15、【解析】分離參數(shù)法得到能成立,構(gòu)造函數(shù),求出的最小值,即可求出實(shí)數(shù)a的取值范圍.【詳解】由得.設(shè),則存在,使得成立,即能成立,所以能成立,所以.又令,由對(duì)勾函數(shù)的性質(zhì)可得:在上,t(x)單調(diào)遞增,所以當(dāng)x=2時(shí),t有最小值,所以實(shí)數(shù)a的取值范圍是.故答案為:【點(diǎn)睛】導(dǎo)數(shù)的應(yīng)用主要有:(1)利用導(dǎo)函數(shù)幾何意義求切線方程;(2)利用導(dǎo)數(shù)研究原函數(shù)的單調(diào)性,求極值(最值);(3)利用導(dǎo)數(shù)求參數(shù)的取值范圍.16、【解析】求導(dǎo)易得函數(shù)有兩個(gè)極值點(diǎn)和,根據(jù)題意,由求解.【詳解】由,可得函數(shù)有兩個(gè)極值點(diǎn)和,,,若函數(shù)有三個(gè)零點(diǎn),必有解得或故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】根據(jù),,成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值為.列出關(guān)于、、的方程組,求出、的值,即可得出橢圓的方程;對(duì)直線和分兩種情況討論:一種是兩條直線與坐標(biāo)軸垂直,可求出兩條弦長(zhǎng)度之和;二是當(dāng)兩條直線斜率都存在時(shí),設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,利用弦長(zhǎng)公式可計(jì)算出的長(zhǎng)度的表達(dá)式,然后利用相應(yīng)的代換可求出的長(zhǎng)度表達(dá)式,將兩線段長(zhǎng)度表達(dá)式相加,利用函數(shù)思想可求出兩條弦長(zhǎng)的取值范圍最后將兩種情況的取值范圍進(jìn)行合并即可得出答案【詳解】易知,得,則,而,又,得,,因此,橢圓C的標(biāo)準(zhǔn)方程為;當(dāng)兩條直線中有一條斜率為0時(shí),另一條直線的斜率不存在,由題意易得;當(dāng)兩條直線斜率都存在且不為0時(shí),由知,設(shè)、,直線MN的方程為,則直線PQ的方程為,將直線方程代入橢圓方程并整理得:,顯然,,,,同理得,所以,,令,則,,設(shè),,所以,,所以,,則綜合可知,的取值范圍是【點(diǎn)睛】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求范圍,屬于難題.解決圓錐曲線中的范圍問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中范圍問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.18、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(diǎn)(2,1),由(2,1)在圓內(nèi),即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(diǎn)(2,1).因?yàn)?,則點(diǎn)(2,1)位于圓的內(nèi)部,故直線與圓相交.【小問2詳解】直線斜率不存在時(shí),直線滿足題意;②直線斜率存在的時(shí)候,設(shè)直線方程為,即.因?yàn)橹本€與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.19、(1);(2)或或.【解析】(1)根據(jù)給定條件結(jié)合p的幾何意義,直接求出p寫出方程作答.(2)直線l的斜率存在設(shè)出其方程,再與拋物線C的方程聯(lián)立,再討論計(jì)算,l斜率不存在時(shí)驗(yàn)證作答.【小問1詳解】因拋物線的焦點(diǎn)到準(zhǔn)線的距離為,于是得,所以拋物線的方程為.【小問2詳解】當(dāng)直線的斜率存在時(shí),設(shè)直線為,由消去y并整理得:,當(dāng)時(shí),,點(diǎn)是直線與拋物線唯一公共點(diǎn),因此,,直線方程為,當(dāng)時(shí),,此時(shí)直線與拋物線相切,直線方程為,當(dāng)直線的斜率不存在時(shí),y軸與拋物線有唯一公共點(diǎn),直線方程為,所以直線方程為為或或.20、(1)(2);或【解析】(1)由題意得到數(shù)列為公差為的等差數(shù)列,結(jié)合,,成等比數(shù)列,列出方程求得,即可得到數(shù)列的通項(xiàng)公式;(2)由,得到時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,結(jié)合等差數(shù)列的求和公式,即可求解.【小問1詳解】解:由題意,數(shù)列滿足,所以數(shù)列為公差為的等差數(shù)列,又由,,成等比數(shù)列,可得,即,解得,所以數(shù)列的通項(xiàng)公式.【小問2詳解】解:由數(shù)列的通項(xiàng)公式,令,即,解得,所以當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以當(dāng)或時(shí),取得最小值,最小值為.21、(1)(2)【解析】(1)按照所給條件,先算出的表達(dá)式,再按照與的關(guān)系計(jì)算,;(2)裂項(xiàng)相消求和即可.【小問1詳解】由題可知數(shù)列是等差數(shù)列,所以,,又因?yàn)椋?;【小?詳解】所以;故答案為:,.22、(1);(2)直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 隴南清水混凝土施工方案
- 樂都水泥滲水磚施工方案
- 年產(chǎn)1000萬米紡織壞布建設(shè)可行性研究報(bào)告申請(qǐng)建議書
- 2025年中國(guó)甘草次酸市場(chǎng)競(jìng)爭(zhēng)格局分析及投資方向研究報(bào)告
- 水楊酸甲酯項(xiàng)目建議書(立項(xiàng)報(bào)告)
- 裝修人工費(fèi)季節(jié)性用工合同
- 畫室裝修改造委托書
- 陶瓷店裝修合同費(fèi)用方案
- 2025年新型樹林承包與生態(tài)修復(fù)合同2篇
- 2025年度運(yùn)動(dòng)健身產(chǎn)品限時(shí)團(tuán)購(gòu)合同范本3篇
- 2024-2025學(xué)年成都高新區(qū)七上數(shù)學(xué)期末考試試卷【含答案】
- 定額〔2025〕1號(hào)文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價(jià)格水平調(diào)整的通知
- 2025年浙江杭州市西湖區(qū)專職社區(qū)招聘85人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《數(shù)學(xué)廣角-優(yōu)化》說課稿-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)人教版
- “懂你”(原題+解題+范文+話題+技巧+閱讀類素材)-2025年中考語文一輪復(fù)習(xí)之寫作
- 2025年景觀照明項(xiàng)目可行性分析報(bào)告
- 2025年江蘇南京地鐵集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 2025年度愛讀書學(xué)長(zhǎng)參與的讀書項(xiàng)目投資合同
- 電力系統(tǒng)分析答案(吳俊勇)(已修訂)
- 化學(xué)-河北省金太陽質(zhì)檢聯(lián)盟2024-2025學(xué)年高三上學(xué)期12月第三次聯(lián)考試題和答案
- 期末復(fù)習(xí)試題(試題)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué) 北師大版
評(píng)論
0/150
提交評(píng)論