福建省建甌市二中2022-2023學(xué)年高三十月聯(lián)合考試數(shù)學(xué)試題_第1頁
福建省建甌市二中2022-2023學(xué)年高三十月聯(lián)合考試數(shù)學(xué)試題_第2頁
福建省建甌市二中2022-2023學(xué)年高三十月聯(lián)合考試數(shù)學(xué)試題_第3頁
福建省建甌市二中2022-2023學(xué)年高三十月聯(lián)合考試數(shù)學(xué)試題_第4頁
福建省建甌市二中2022-2023學(xué)年高三十月聯(lián)合考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省建甌市二中2022-2023學(xué)年高三十月聯(lián)合考試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若復(fù)數(shù),則()A. B. C. D.203.設(shè)分別為的三邊的中點,則()A. B. C. D.4.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為()A. B.C. D.6.正方形的邊長為,是正方形內(nèi)部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.7.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位8.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則9.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)10.已知的值域為,當(dāng)正數(shù)a,b滿足時,則的最小值為()A. B.5 C. D.911.正項等比數(shù)列中的、是函數(shù)的極值點,則()A. B.1 C. D.212.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直三棱柱內(nèi)有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.14.如圖所示梯子結(jié)構(gòu)的點數(shù)依次構(gòu)成數(shù)列,則________.15.設(shè)為拋物線的焦點,為上互相不重合的三點,且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_______.16.函數(shù)的值域為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)交通部門調(diào)查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關(guān);平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員女性駕駛員合計(2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結(jié)果相互獨立,求的分布列和數(shù)學(xué)期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82818.(12分)已知圓上有一動點,點的坐標(biāo)為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標(biāo)為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.19.(12分)已知函數(shù),.(1)若時,解不等式;(2)若關(guān)于的不等式在上有解,求實數(shù)的取值范圍.20.(12分)已知,,(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知銳角的內(nèi)角,,的對邊分別為,,,且,,求邊上的高的最大值.21.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數(shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.22.(10分)已知(1)當(dāng)時,判斷函數(shù)的極值點的個數(shù);(2)記,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

求出復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo),即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對應(yīng)的點的坐標(biāo)為,該點位于第四象限.故選:D.【點睛】本題考查復(fù)數(shù)對應(yīng)的點的位置的判斷,屬于基礎(chǔ)題.2、B【解析】

化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復(fù)數(shù)的運算,復(fù)數(shù)的模,意在考查學(xué)生的計算能力.3、B【解析】

根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎(chǔ)題.4、C【解析】

先得出兩直線平行的充要條件,根據(jù)小范圍可推導(dǎo)出大范圍,可得到答案.【詳解】直線,,的充要條件是,當(dāng)a=2時,化簡后發(fā)現(xiàn)兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.5、D【解析】

由圖象可以求出周期,得到,根據(jù)圖象過點可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單調(diào)增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過點,所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點法”求函數(shù)解析式,屬于中檔題.6、C【解析】

分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),,,則,,由,即,得.所以=,所以當(dāng)時,的最小值為.故選:C.【點睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.7、D【解析】

根據(jù)函數(shù)圖像得到函數(shù)的一個解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個單位得到.故選:.【點睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.8、D【解析】試題分析:,,故選D.考點:點線面的位置關(guān)系.9、D【解析】

原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關(guān)鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.10、A【解析】

利用的值域為,求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域為,∴,∴,∴,當(dāng)且僅當(dāng)時取等號,∴的最小值為.故選:A.【點睛】本題主要考查了對數(shù)復(fù)合函數(shù)的值域運用,同時也考查了基本不等式中“1的運用”,屬于中檔題.11、B【解析】

根據(jù)可導(dǎo)函數(shù)在極值點處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點,也就是的兩個根∴又是正項等比數(shù)列,所以∴.故選:B【點睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.12、C【解析】

由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域為,對恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞增;當(dāng)時,,此時函數(shù)單調(diào)遞減.所以,.故選:C.【點睛】本題考查代數(shù)式最值的計算,涉及指對同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設(shè)球O1的半徑為,由題得,所以棱柱的側(cè)棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內(nèi)切球和外接球問題,考查球的表面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.14、【解析】

根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點睛】本題考查了等差數(shù)列的應(yīng)用,意在考查學(xué)生的計算能力和應(yīng)用能力.15、或【解析】

設(shè)出三點的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進行求解即可.【詳解】拋物線的準(zhǔn)線方程為:,設(shè),由拋物線的定義可知:,,,因為、、成等差數(shù)列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運算能力.16、【解析】

利用換元法,得到,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當(dāng)時,,當(dāng)時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.【點睛】本題主要考查了三角函數(shù)的最值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預(yù)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)填表見解析;有的把握認為,平均車速超過與性別有關(guān)(2)詳見解析【解析】

(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷出有的把握認為,平均車速超過與性別有關(guān).(2)利用二項分布的知識計算出分布列和數(shù)學(xué)期望.【詳解】(1)平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員301040女性駕駛員51520合計352560因為,,所以有的把握認為,平均車速超過與性別有關(guān).(2)服從,即,.所以的分布列如下0123的期望【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查二項分布分布列和數(shù)學(xué)期望,屬于中檔題.18、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)先畫出圖形,結(jié)合垂直平分線和平行四邊形性質(zhì)可得為一定值,,故可確定點軌跡為橢圓(),進而求解;(Ⅱ)設(shè)直線方程為,點坐標(biāo)分別為,聯(lián)立直線與橢圓方程得,,分別由點斜式求得直線KA的方程為,令得,同理得,由結(jié)合韋達定理即可求解,而,當(dāng)重合交于點時,可求最值;【詳解】(Ⅰ),所以點的軌跡是一個橢圓,且長軸長,半焦距,所以,軌跡的方程為.(Ⅱ)當(dāng)直線的斜率為0時,與曲線無交點.當(dāng)直線的斜率不為0時,設(shè)過點的直線方程為,點坐標(biāo)分別為.直線與橢圓方程聯(lián)立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點為.不妨設(shè)點在點的上方,則.【點睛】本題考查根據(jù)橢圓的定義求橢圓的方程,橢圓中的定點定值問題,屬于中檔題19、(1)(2)【解析】

(1)零點分段法,分,,討論即可;(2)當(dāng)時,原問題可轉(zhuǎn)化為:存在,使不等式成立,即.【詳解】解:(1)若時,,當(dāng)時,原不等式可化為,解得,所以,當(dāng)時,原不等式可化為,解得,所以,當(dāng)時,原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當(dāng)時,由得,即,故得,又由題意知:,即,故的范圍為.【點睛】本題考查解絕對值不等式以及不等式能成立求參數(shù),考查學(xué)生的運算能力,是一道容易題.20、(1)的最小正周期為:;函數(shù)單調(diào)遞增區(qū)間為:;(2).【解析】

(1)根據(jù)誘導(dǎo)公式,結(jié)合二倍角的正弦公式、輔助角公式把函數(shù)的解析式化簡成余弦型函數(shù)解析式形式,利用余弦型函數(shù)的最小正周期公式和單調(diào)性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論