江蘇省鎮(zhèn)江市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含解析)_第1頁
江蘇省鎮(zhèn)江市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含解析)_第2頁
江蘇省鎮(zhèn)江市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含解析)_第3頁
江蘇省鎮(zhèn)江市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含解析)_第4頁
江蘇省鎮(zhèn)江市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含解析)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高一上學(xué)期期末數(shù)學(xué)試題一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知全集SKIPIF1<0,集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】先求出SKIPIF1<0,進(jìn)而求出SKIPIF1<0.【詳解】SKIPIF1<0,故SKIPIF1<0SKIPIF1<0故選:B2.命題“對任意SKIPIF1<0,都有SKIPIF1<0”的否定為()A.存在SKIPIF1<0,使得SKIPIF1<0 B.不存在SKIPIF1<0,使得SKIPIF1<0C.存在SKIPIF1<0,使得SKIPIF1<0 D.存在SKIPIF1<0,使得SKIPIF1<0【答案】D【解析】【分析】利用全稱量詞命題的否定是特稱命題可得出結(jié)論.【詳解】由全稱量詞命題的否定可知,原命題的否定為“存在SKIPIF1<0,使得SKIPIF1<0”.故選:D.3.冪函數(shù)SKIPIF1<0為偶函數(shù),且在SKIPIF1<0上為減函數(shù)是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)函數(shù)性質(zhì)逐項分析判斷.【詳解】對A:SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為偶函數(shù),且在SKIPIF1<0上為減函數(shù),A正確;對B:SKIPIF1<0的定義域為SKIPIF1<0,即定義域不關(guān)于原點對稱,故為非奇非偶函數(shù),B錯誤;對C:SKIPIF1<0,故SKIPIF1<0為偶函數(shù),且在SKIPIF1<0上為增函數(shù),C正確;對D:SKIPIF1<0,故SKIPIF1<0為奇函數(shù),D錯誤.故選:A.4.已知方程SKIPIF1<0解在SKIPIF1<0內(nèi),則SKIPIF1<0()A.0 B.1 C.2 D.3【答案】B【解析】【分析】根據(jù)函數(shù)單調(diào)性結(jié)合零點存在性定理分析運算.【詳解】構(gòu)建SKIPIF1<0,則SKIPIF1<0在定義域內(nèi)單調(diào)遞增,故SKIPIF1<0在定義域內(nèi)至多有一個零點,∵SKIPIF1<0,∴SKIPIF1<0僅在SKIPIF1<0內(nèi)存在零點,即方程SKIPIF1<0的解僅在SKIPIF1<0內(nèi),故SKIPIF1<0.故選:B.5.中國折扇有著深厚的文化底蘊.用黃金分割比例設(shè)計一把富有美感的紙扇,如圖所示,在設(shè)計折扇的圓心角SKIPIF1<0時,可把折扇考慮為從一圓形(半徑為SKIPIF1<0)分割出來的扇形,使扇形的面積SKIPIF1<0與圓的面積的乘積等于剩余面積SKIPIF1<0的平方.則扇形的圓心角SKIPIF1<0為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】計算出SKIPIF1<0、SKIPIF1<0,根據(jù)已知條件可得出關(guān)于SKIPIF1<0的方程,結(jié)合SKIPIF1<0可求得SKIPIF1<0的值.【詳解】由題意可知,SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,整理可得SKIPIF1<0,由題意可知,SKIPIF1<0,解得SKIPIF1<0.故選:C.6.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)指數(shù)函數(shù)以及對數(shù)函數(shù)的單調(diào)性可得SKIPIF1<0,根據(jù)三角函數(shù)的有界性可判斷SKIPIF1<0,即可求解.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:B7.函數(shù)SKIPIF1<0的圖象大致是()A. B.C. D.【答案】A【解析】【分析】分析函數(shù)SKIPIF1<0的奇偶性及其在SKIPIF1<0上的增長速度,結(jié)合排除法可得出合適的選項.【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故對任意的SKIPIF1<0,SKIPIF1<0,所以,函數(shù)SKIPIF1<0為偶函數(shù),排除BD選項;當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0的增長速度快于函數(shù)SKIPIF1<0的增長速度,排除C選項.故選:A.8.已知函數(shù)SKIPIF1<0,正實數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.2 B.4 C.6 D.8【答案】B【解析】【分析】先證明函數(shù)SKIPIF1<0為奇函數(shù),由SKIPIF1<0可得SKIPIF1<0,再利用基本不等式求SKIPIF1<0的最小值.【詳解】SKIPIF1<0,函數(shù)定義域為R,關(guān)于原點對稱,SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),有SKIPIF1<0,由解析式可以看出SKIPIF1<0單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0為正實數(shù),則有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時等號成立,則有SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,則SKIPIF1<0的最小值為4.故選:B.二、選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.9.下列命題為真命題的是()A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0【答案】BC【解析】【分析】對A、B、D:根據(jù)不等式的性質(zhì)結(jié)合作差法分析判斷;對C:根據(jù)指數(shù)函數(shù)單調(diào)性分析判斷.【詳解】對A:當(dāng)SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0時,則SKIPIF1<0,A為假命題;對B:∵SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,B為真命題;對C:∵SKIPIF1<0在定義域內(nèi)單調(diào)遞增,若SKIPIF1<0,則SKIPIF1<0,C為真命題;對D:∵SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0;當(dāng)SKIPIF1<0時,則SKIPIF1<0;D為假命題.故選:BC.10.已知SKIPIF1<0,SKIPIF1<0,則下列等式正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【解析】【分析】利用同角三角函數(shù)的平方關(guān)系可判斷AB選項;求出SKIPIF1<0、SKIPIF1<0的值,可判斷CD選項的正誤.【詳解】因為SKIPIF1<0,則SKIPIF1<0.對于A選項,SKIPIF1<0,可得SKIPIF1<0,A對;對于B選項,由A選項可知,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,B對;對于C選項,SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,C錯;對于D選項,SKIPIF1<0,D對.故選:ABD.11.已知函數(shù)SKIPIF1<0,下列結(jié)論正確的是()A.函數(shù)SKIPIF1<0恒滿足SKIPIF1<0B.直線SKIPIF1<0為函數(shù)SKIPIF1<0圖象的一條對稱軸C.點SKIPIF1<0是函數(shù)SKIPIF1<0圖象的一個對稱中心D.函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù)【答案】AC【解析】【分析】根據(jù)誘導(dǎo)公式可判斷A選項;利用正切型函數(shù)的對稱性可判斷BC選項;利用正切型函數(shù)的單調(diào)性可判斷D選項.【詳解】對于A選項,SKIPIF1<0,A正確;對于B選項,函數(shù)SKIPIF1<0無對稱軸,B錯;對于C選項,由SKIPIF1<0可得SKIPIF1<0,當(dāng)SKIPIF1<0時,可得SKIPIF1<0,所以,點SKIPIF1<0是函數(shù)SKIPIF1<0圖象的一個對稱中心,C對;對于D選項,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上不單調(diào),D錯.故選:AC.12.已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的有()A.若SKIPIF1<0為銳角,則SKIPIF1<0B.SKIPIF1<0C.方程SKIPIF1<0有且只有一個根SKIPIF1<0D.方程SKIPIF1<0的解都在區(qū)間SKIPIF1<0內(nèi)【答案】BCD【解析】【分析】對A:利用SKIPIF1<0放縮可得SKIPIF1<0;對B:利用做差法分析判斷;對C:根據(jù)函數(shù)SKIPIF1<0的單調(diào)性分析判斷;對D:分類討論,結(jié)合零點存在性定理分析判斷.【詳解】對A:若SKIPIF1<0為銳角,則SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,A錯誤;對B:當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,B正確;對C:∵SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,解得SKIPIF1<0,C正確;對D:構(gòu)建SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上連續(xù)不斷,則有:當(dāng)SKIPIF1<0時,則SKIPIF1<0,故SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0內(nèi)無零點;當(dāng)SKIPIF1<0時,則SKIPIF1<0,故SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0內(nèi)無零點;當(dāng)SKIPIF1<0時,則SKIPIF1<0,故SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在零點;綜上所述:SKIPIF1<0只在區(qū)間SKIPIF1<0內(nèi)存在零點,即方程SKIPIF1<0的解都在區(qū)間SKIPIF1<0內(nèi),D正確.故選:BCD.【點睛】方法點睛:判斷函數(shù)零點的方法(1)直接求零點:令f(x)=0,則方程解的個數(shù)即為零點的個數(shù).(2)零點存在性定理:利用該定理不僅要求函數(shù)在[a,b]上是連續(xù)曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象和性質(zhì)(如單調(diào)性)才能確定函數(shù)有多少個零點.(3)數(shù)形結(jié)合:對于給定的函數(shù)不能直接求解或畫出圖形,常會通過分解轉(zhuǎn)化為兩個函數(shù)圖象,然后數(shù)形結(jié)合,看其交點的個數(shù)有幾個,其中交點的橫坐標(biāo)有幾個不同的值,就有幾個不同的零點.三、填空題:本題共4小題,每小題5分,共20分.13.SKIPIF1<0_________.【答案】SKIPIF1<0##SKIPIF1<0【解析】【分析】利用對數(shù)的運算性質(zhì)計算可得所求代數(shù)式的值.【詳解】原式SKIPIF1<0.故答案:SKIPIF1<0.14.已知函數(shù)SKIPIF1<0對任意實數(shù)SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的范圍為__________.【答案】SKIPIF1<0【解析】【分析】SKIPIF1<0對任意實數(shù)SKIPIF1<0恒成立,則SKIPIF1<0,討論SKIPIF1<0與0的大小可得答案.【詳解】因SKIPIF1<0對任意實數(shù)SKIPIF1<0恒成立,則SKIPIF1<0.當(dāng)SKIPIF1<0時,符合題意;當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.綜上,SKIPIF1<0.故答案為:SKIPIF1<015.已知某種果蔬的有效保鮮時間SKIPIF1<0(單位:小時)與儲藏溫度SKIPIF1<0(單位:℃)近似滿足函數(shù)關(guān)系SKIPIF1<0(a,b為常數(shù),e為自然對數(shù)底數(shù)),若該果蔬在7℃的保鮮時間為216小時,在28℃的有效保鮮時間為8小時,那么在14℃時,該果蔬的有效保鮮時間大約為_______小時.【答案】72【解析】【分析】根據(jù)題意列出方程組,求出SKIPIF1<0,確定函數(shù)解析式,再代入求值即可.【詳解】由題意得:SKIPIF1<0,①÷②得:SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0故當(dāng)SKIPIF1<0時,SKIPIF1<0.故答案為:7216.已知函數(shù)SKIPIF1<0,則SKIPIF1<0的值域為________﹔函數(shù)SKIPIF1<0圖象的對稱中心為_________.【答案】①.SKIPIF1<0②.SKIPIF1<0【解析】【分析】將函數(shù)的解析式變形為SKIPIF1<0,結(jié)合不等式的基本性質(zhì)可求得SKIPIF1<0的值域;利用函數(shù)對稱性的定義可求得函數(shù)SKIPIF1<0的對稱中心的坐標(biāo).【詳解】因為SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,所以,函數(shù)SKIPIF1<0的值域為SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,因此,函數(shù)SKIPIF1<0圖象的對稱中心為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.17.已知集合SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0;(2)若“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)分別解出集合中的不等式,得到兩個集合,再取交集;(2)依題意有有SKIPIF1<0,列方程組求實數(shù)SKIPIF1<0的取值范圍.【小問1詳解】SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【小問2詳解】因為“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,有A是B的真子集可得SKIPIF1<0等號不同時取,解得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<018.已知SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的值;(2)若角SKIPIF1<0的終邊與角SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)利用平方關(guān)系式求出SKIPIF1<0和SKIPIF1<0,再根據(jù)商數(shù)關(guān)系式求出SKIPIF1<0;(2)根據(jù)角SKIPIF1<0的終邊與角SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,推出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再根據(jù)誘導(dǎo)公式化簡所求式子,代入SKIPIF1<0可求出結(jié)果.【小問1詳解】因為SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,不符合題意;當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0.小問2詳解】若角SKIPIF1<0的終邊與角SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.19.用“五點法”作函數(shù)SKIPIF1<0在一個周期內(nèi)的圖象時,列表計算了部分?jǐn)?shù)據(jù):SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0020d0(1)請根據(jù)上表數(shù)據(jù),求出函數(shù)SKIPIF1<0的表達(dá)式并寫出表內(nèi)實數(shù)a,b,c,d的值;(2)請在給定的坐標(biāo)系內(nèi),作出函數(shù)SKIPIF1<0在一個周期內(nèi)的圖象;(3)若存在SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)圖象見詳解(3)SKIPIF1<0【解析】【分析】(1)根據(jù)表中數(shù)據(jù)結(jié)合正弦函數(shù)性質(zhì)運算求解;(2)根據(jù)題意結(jié)合五點作圖法作圖;(3)以SKIPIF1<0為整體,結(jié)合正弦函數(shù)求SKIPIF1<0的值域,再結(jié)合存在性問題分析求解.【小問1詳解】由題意可得:SKIPIF1<0,即SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,∵SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0.【小問2詳解】補(bǔ)全表格得:SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0020SKIPIF1<00則函數(shù)SKIPIF1<0在一個周期內(nèi)的圖象如圖所示:【小問3詳解】∵SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0,即SKIPIF1<0,故實數(shù)SKIPIF1<0的取值范圍SKIPIF1<0.20.已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0).(1)求函數(shù)SKIPIF1<0的奇偶性;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有實數(shù)解,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)奇函數(shù)(2)SKIPIF1<0【解析】【分析】(1)求出函數(shù)SKIPIF1<0的定義域,利用函數(shù)奇偶性的定義可得出結(jié)論;(2)由SKIPIF1<0可得出SKIPIF1<0,求出函數(shù)SKIPIF1<0在SKIPIF1<0上的值域,可得出實數(shù)SKIPIF1<0的取值范圍.【小問1詳解】解:對于函數(shù)SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,故函數(shù)SKIPIF1<0為奇函數(shù).【小問2詳解】解:由SKIPIF1<0可得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,因為函數(shù)SKIPIF1<0、SKIPIF1<0在SKIPIF1<0上為增函數(shù),故函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,因此,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.21.某企業(yè)參加國際商品展覽會,向主辦方申請了SKIPIF1<0平方米的矩形展位,展位由展示區(qū)(圖中陰影部分)和過道(圖中空白部分)兩部分組成,其中展示區(qū)左右兩側(cè)過道寬度都為SKIPIF1<0米,前方過道寬度為SKIPIF1<0米.后期將對展位進(jìn)行裝修,其中展示區(qū)的裝修費為SKIPIF1<0元/平方米,過道的裝修費為SKIPIF1<0元/平方米.記展位的一條邊長為SKIPIF1<0米,整個展位的裝修總費用為SKIPIF1<0元.(1)請寫出裝修總費用SKIPIF1<0關(guān)于邊長SKIPIF1<0的表達(dá)式;(2)如何設(shè)計展位的邊長使得裝修總費用最低?并求出最低費用.【答案】(1)SKIPIF1<0,其中SKIPIF1<0(2)當(dāng)展位區(qū)域是邊長為SKIPIF1<0米的矩形區(qū)域時,裝修費用最低為SKIPIF1<0元【解析】【分析】(1)設(shè)展位靠墻的一邊邊長為SKIPIF1<0米,則展示區(qū)靠墻的一邊的邊長為SKIPIF1<0米,計算出展示區(qū)的面積,即可得出裝修總費用SKIPIF1<0關(guān)于邊長SKIPIF1<0的表達(dá)式;(2)利用基本不等式可求得SKIPIF1<0的最小值,利用等號成立的條件可得出結(jié)論.【小問1詳解】解:設(shè)展位靠墻的一邊邊長為SKIPIF1<0米,則展示區(qū)靠墻的一邊的邊長為SKIPIF1<0米,展示區(qū)另一邊邊長為SKIPIF1<0米,由SKIPIF1<0可得SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,其中SKIPIF1<0.【小問2詳解】解:由基本不等式可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,因此,當(dāng)展位區(qū)域是邊長為SKIPIF1<0米的矩形區(qū)域時,裝修費用最小為SKIPIF1<0元.22.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)判斷并證明SKIPIF1<0在SKIPIF1<0上的單調(diào)性;(2)當(dāng)SKIPIF1<0時,都有SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍;(3)若方程SKIPIF1<0在SKIPIF1<0上有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論