廣西梧州市2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第1頁
廣西梧州市2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第2頁
廣西梧州市2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第3頁
廣西梧州市2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第4頁
廣西梧州市2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西梧州市2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定2.設(shè)是等差數(shù)列,是其公差,是其前n項的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值3.若函數(shù)在定義域上單調(diào)遞增,則實數(shù)的取值范圍為()A. B.C. D.4.已知函數(shù),則曲線在點處的切線方程為()A. B.C. D.5.函數(shù)的圖像在點處的切線方程為()A. B.C. D.6.直線(t為參數(shù))被圓所截得的弦長為()A. B.C. D.7.下列說法正確的是()A.空間中的任意三點可以確定一個平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個平面D.正四棱柱的側(cè)面都是正方形8.已知點,和直線,若在坐標(biāo)平面內(nèi)存在一點P,使,且點P到直線l的距離為2,則點P的坐標(biāo)為()A.或 B.或C.或 D.或9.已知函數(shù),.若存在三個零點,則實數(shù)的取值范圍是()A. B.C. D.10.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.11.已知橢圓方程為:,則其離心率為()A. B.C. D.12.在等差數(shù)列中,,則等于A.2 B.18C.4 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,向量,若,則實數(shù)的值為________.14.若某幾何體的三視圖如圖所示,則該幾何體的體積是__________15.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現(xiàn)在兩人各射擊一次,中靶至少一次就算完成目標(biāo),則完成目標(biāo)的概率為_____________16.如圖,在等腰直角中,,為半圓弧上異于,的動點,當(dāng)半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點,使得;②存在點,使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J(rèn)為正確的結(jié)果的序號).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓過,兩點,為坐標(biāo)原點(1)求橢圓的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓恒有兩個交點,,且?若存在,寫出該圓的方程,并求的取值范圍;若不存在,說明理由18.(12分)冬奧會的全稱是冬季奧林匹克運動會,是世界規(guī)模最大的冬季綜合性運動會,每四年舉辦一屆.第24屆冬奧會將于2022年在中國北京和張家口舉行.為了弘揚奧林匹克精神,增強(qiáng)學(xué)生的冬奧會知識,廣安市某中學(xué)校從全校隨機(jī)抽取50名學(xué)生參加冬奧會知識競賽,并根據(jù)這50名學(xué)生的競賽成績,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間(1)求頻率分布直方圖中a的值:(2)求這50名學(xué)生競賽成績的眾數(shù)和中位數(shù).(結(jié)果保留一位小數(shù))19.(12分)已知是等差數(shù)列,是等比數(shù)列,且(1)求,的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)某微小企業(yè)員工的年齡分布莖葉圖如圖所示:(1)求該公司員工年齡的極差和第25百分位數(shù);(2)從該公司員工中隨機(jī)抽取一位,記所抽取員工年齡在區(qū)間內(nèi)為事件,所抽取員工年齡在區(qū)間內(nèi)為事件,判斷事件與是否互相獨立,并說明理由;21.(12分)已知函數(shù)(1)判斷的零點個數(shù);(2)若對任意恒成立,求的取值范圍22.(10分)已知數(shù)列的首項,且滿足.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.2、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項的和的性質(zhì)可判斷每個選項的正誤,進(jìn)而可得正確選項.【詳解】由可得,由可得,故選項B正確;由可得,因為公差,故選項A正確,,所以,故選項C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項D正確;所以選項C不正確,故選:C3、D【解析】函數(shù)在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數(shù)的定義域為,,在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,即在上恒成立,分離參數(shù)得,所以,即.【點睛】方法點睛:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的通解:若在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立;若在區(qū)間上單調(diào)遞減,則在區(qū)間上恒成立;然后再利用分離參數(shù)求得參數(shù)的取值范圍即可.4、A【解析】求出函數(shù)的導(dǎo)函數(shù),再求出,然后利用導(dǎo)數(shù)的幾何意義求解作答.【詳解】函數(shù),求導(dǎo)得:,則,而,于是得:,即,所以曲線在點處的切線方程為.故選:A5、B【解析】求得函數(shù)的導(dǎo)數(shù),計算出和的值,可得出所求切線的點斜式方程,化簡即可.詳解】,,,,因此,所求切線的方程為,即.故選:B.【點睛】本題考查利用導(dǎo)數(shù)求解函圖象的切線方程,考查計算能力,屬于基礎(chǔ)題6、C【解析】求得直線普通方程以及圓的直角坐標(biāo)方程,利用弦長公式即可求得結(jié)果.【詳解】因為直線的參數(shù)方程為:(t為參數(shù)),故其普通方程為,又,根據(jù),故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.7、C【解析】根據(jù)立體幾何相關(guān)知識對各選項進(jìn)行判斷即可.【詳解】對于A,根據(jù)公理2及推論可知,不共線的三點確定一個平面,故A錯誤;對于B,在一個平面內(nèi),四邊相等的四邊形才一定是菱形,故B錯誤;對于C,根據(jù)公理2及推論可知,兩條相交直線可以確定一個平面,故C正確;對于D,正四棱柱指上、下底面都是正方形且側(cè)棱垂直于底面的棱柱,側(cè)面可以是矩形,故D錯誤.故選:C8、C【解析】設(shè)點的坐標(biāo)為,根據(jù),點到直線的距離為,聯(lián)立方程組即可求解.【詳解】解:設(shè)點的坐標(biāo)為,線段的中點的坐標(biāo)為,,∴的垂直平分線方程為,即,∵點在直線上,∴,又點到直線:的距離為,∴,即,聯(lián)立可得、或、,∴所求點的坐標(biāo)為或,故選:C9、B【解析】根據(jù)題意,當(dāng)時,有一個零點,進(jìn)而將問題轉(zhuǎn)化為當(dāng)時,有兩個實數(shù)根,再研究函數(shù)即可得答案.【詳解】解:因為存在三個零點,所以方程有三個實數(shù)根,因為當(dāng)時,由得,解得,有且只有一個實數(shù)根,所以當(dāng)時,有兩個實數(shù)根,即有兩個實數(shù)根,所以令,則,所以當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,因為,,,所以的圖象如圖所示,所以有兩個實數(shù)根,則故選:B10、C【解析】作出輔助線,找到異面直線與所成角,進(jìn)而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C11、B【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程,確定,計算離心率即可.【詳解】由知,,,,即,故選:B12、D【解析】利用等差數(shù)列性質(zhì)得到,,計算得到答案.詳解】等差數(shù)列中,故選D【點睛】本題考查了等差數(shù)列的計算,利用性質(zhì)可以簡化運算,是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù),由求解.【詳解】因為向量,向量,且,所以,解得,故答案為:214、1【解析】根據(jù)三視圖可得如圖所示的幾何體,從而可求其體積.【詳解】據(jù)三視圖分析知,該幾何體為直三棱柱,且底面為直角邊為1的等腰直角三角形,高為2,所以其體積故答案為:115、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標(biāo)的概率為.故答案為:16、①②④【解析】①當(dāng)D為中點,且A,B,C,D四點共面時,可證得四邊形ABCD為正方形即可判斷①;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,作圖分析驗證可判斷④.【詳解】①當(dāng)D為中點,且A,B,C,D四點共面時,連結(jié)BD,交AC于,則為AC中點,此時,且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,此時有:平面ABC,,又因為,所以平面CDB,所以,故②正確;③,當(dāng)平面平面ABC,且D為中點時,h有最大值;當(dāng)A,B,C,D四點共面時h有最小值0,此時為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯誤.④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,取AC中點O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,,【解析】(1)根據(jù)橢圓E:()過,兩點,直接代入方程解方程組,解方程組即可.(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,當(dāng)切線斜率存在時,設(shè)該圓的切線方程為,聯(lián)立,根據(jù),結(jié)合韋達(dá)定理運算,同時滿足,則存在,否則不存在;在該圓的方程存在時,利用弦長公式結(jié)合韋達(dá)定理得到,結(jié)合題意求解即可,當(dāng)切線斜率不存在時,驗證即可.【小問1詳解】將,的坐標(biāo)代入橢圓的方程得,解得,所以橢圓的方程為【小問2詳解】假設(shè)滿足題意的圓存在,其方程為,其中,設(shè)該圓的任意一條切線和橢圓交于,兩點,當(dāng)直線的斜率存在時,令直線的方程為,①將其代入橢圓的方程并整理得,由韋達(dá)定理得,,②因為,所以,③將①代入③并整理得,聯(lián)立②得,④因為直線和圓相切,因此,由④得,所以存在圓滿足題意當(dāng)切線的斜率不存在時,易得,由橢圓方程得,顯然,綜上所述,存在圓滿足題意當(dāng)切線的斜率存在時,由①②④得,由,得,即當(dāng)切線的斜率不存在時,易得,所以綜上所述,存在圓心在原點的圓滿足題意,且18、(1)(2)眾數(shù);中位數(shù)【解析】(1)根據(jù)頻率分布直方圖矩形面積和為1列式即可;(2)根據(jù)眾數(shù)即最高矩形中間值,中位數(shù)左右兩邊矩形面積各為0.5列式即可.【小問1詳解】由,得【小問2詳解】50名學(xué)生競賽成績的眾數(shù)為設(shè)中位數(shù)為,則解得所以這50名學(xué)生競賽成績的中位數(shù)為76.419、(1),;(2).【解析】(1)由,根據(jù)等比數(shù)列的性質(zhì)求得、的值,即可得的通項公式,再根據(jù)列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)結(jié)合(1)可得,根據(jù)錯位相減法,利用等比數(shù)列求和公式可得結(jié)果.【詳解】(1)等比數(shù)列的公比,所以,設(shè)等差數(shù)列公差為因為,,所以,即所以(2)由(1)知,,因此從而數(shù)列的前項和,,,兩式作差可得,,解得.【點睛】本題主要考查等比數(shù)列和等差數(shù)列的通項、等比數(shù)列的求和公式以及錯位相減法求數(shù)列的前項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解,在寫出“”與“”的表達(dá)式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.20、(1)極差為;第25百分位數(shù)為(2)事件和相互獨立,理由見解析【解析】(1)根據(jù)定義直接計算極差和百分位數(shù)得到答案.(2)計算得到,,,即,得到答案.【小問1詳解】員工年齡的極差為,,故第25百分位數(shù)為.【小問2詳解】,,,故,故事件和相互獨立.21、(1)個;(2).【解析】(1)求,利用導(dǎo)數(shù)判斷的單調(diào)性,結(jié)合單調(diào)性以及零點存在性定理即可求解;(2)由題意可得對任意恒成立,令,則,利用導(dǎo)數(shù)求的最小值即可求解.【小問1詳解】的定義域為,由可得,當(dāng)時,;當(dāng)時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論