版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省益陽市、湘潭市2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的對稱軸為坐標(biāo)軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或2.已知雙曲線的左、右焦點分別為,點在的左支上,過點作的一條漸近線的垂線,垂足為,則的最小值為()A. B.C. D.3.已知直線與橢圓:()相交于,兩點,且線段的中點在直線:上,則橢圓的離心率為()A. B.C. D.4.已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.5.已知實數(shù),滿足約束條件則的最大值為()A.10 B.8C.4 D.206.已知兩定點和,動點在直線上移動,橢圓C以A,B為焦點且經(jīng)過點P,則橢圓C的短軸的最小值為()A. B.C. D.7.已知數(shù)列滿足,則()A. B.C. D.8.展開式的第項為()A. B.C. D.9.已知數(shù)列滿足,在任意相鄰兩項與(k=1,2,…)之間插入個2,使它們和原數(shù)列的項構(gòu)成一個新的數(shù)列.記為數(shù)列的前n項和,則的值為()A.162 B.163C.164 D.16510.設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.下列拋物線中,以點為焦點的是()A. B.C. D.12.從編號分別為,,,,的五個大小完全相同的小球中,隨機(jī)取出三個小球,則恰有兩個小球編號相鄰的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓C,直線l:,若圓C上恰有四個點到直線l的距離都等于1.則b的取值范圍為___.14.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是___________.15.已知雙曲線的兩條漸近線的夾角為,則_______16.等差數(shù)列的前項和為,已知,則__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點E為的中點.(1)證明:平面;(2)求二面角的余弦值.18.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0的交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程19.(12分)已知雙曲線(1)若,求雙曲線的焦點坐標(biāo)、頂點坐標(biāo)和漸近線方程;(2)若雙曲線的離心率為,求實數(shù)的取值范圍20.(12分)已知數(shù)列滿足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項和21.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點,使直線與平面所成角的正弦值等于?22.(10分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為3,直線與拋物線交于,兩點,為坐標(biāo)原點(1)求拋物線的方程;(2)求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分雙曲線的焦點在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點在軸上,則有,則雙曲線的離心率為;若焦點在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點睛】本題考查雙曲線離心率的求解,在雙曲線的焦點位置不確定的情況下,要對雙曲線的焦點位置進(jìn)行分類討論,考查計算能力,屬于基礎(chǔ)題.2、D【解析】利用雙曲線定義可得到,將的最小值變?yōu)榈淖钚≈祮栴},數(shù)形結(jié)合得解.【詳解】由題意得,故,如圖所示:到漸近線的距離,則,當(dāng)且僅當(dāng),,三點共線時取等號,∴的最小值為.故選:D3、A【解析】將直線代入橢圓方程整理得關(guān)于的方程,運用韋達(dá)定理,求出中點坐標(biāo),再由條件得到,再由,,的關(guān)系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設(shè),,,,則,即中點的橫坐標(biāo)是,縱坐標(biāo)是,由于線段的中點在直線上,則,又,則,,即橢圓的離心率為.故選:A4、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因為,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因為,所以,由,所以,因為是銳角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時等號成立,故的最小值為.故選:C5、A【解析】根據(jù)約束條件作出可行域,再將目標(biāo)函數(shù)表示的一簇直線畫出向可行域平移即可求解.【詳解】作出可行域,如圖所示轉(zhuǎn)化為,令則,作出直線并平移使它經(jīng)過可行域點,經(jīng)過時,,解得,所以此時取得最大值,即有最大值,即故選:A.6、B【解析】根據(jù)題意,點關(guān)于直線對稱點的性質(zhì),以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設(shè)點關(guān)于直線的對稱點,則,解得,即.根據(jù)橢圓的定義可知,,當(dāng)、、三點共線時,長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.7、D【解析】根據(jù)給定條件求出數(shù)列的通項公式,再利用裂項相消法即可計算作答.【詳解】因,則,所以,所以.故選:D8、B【解析】由展開式的通項公式求解即可【詳解】因為,所以展開式的第項為,故選:B9、C【解析】確定數(shù)列的前70項含有的前6項和64個2,從而求出前70項和.【詳解】,其中之間插入2個2,之間插入4個2,之間插入8個2,之間插入16個2,之間插入32個2,之間插入64個2,由于,,故數(shù)列的前70項含有的前6項和64個2,故故選:C10、D【解析】當(dāng)時,不是遞增數(shù)列;當(dāng)且時,是遞增數(shù)列,但是不成立,所以選D.考點:等比數(shù)列11、A【解析】由題意設(shè)出拋物線的方程,再結(jié)合焦點坐標(biāo)即可求出拋物線的方程.【詳解】∵拋物線為,∴可設(shè)拋物線方程為,∴即,∴拋物線方程為,故選:A.12、C【解析】利用古典概型計算公式計算即可【詳解】從編號分別為,,,,的五個大小完全相同的小球中,隨機(jī)取出三個小球共有種不同的取法,恰好有兩個小球編號相鄰的有:,共有6種所以概率為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓的幾何性質(zhì),結(jié)合點到直線距離公式進(jìn)行求解即可.【詳解】圓C:的半徑為3,圓心坐標(biāo)為:設(shè)圓心到直線l:的距離為,要想圓C上恰有四個點到直線l的距離都等于1,只需,即,所以.故答案為:.14、【解析】計算點漸近線的距離,從而得,由勾股定理計算,由雙曲線定義列式,從而計算得,即可計算出離心率.【詳解】設(shè)雙曲線右焦點為,因為的中點在雙曲線的漸近線上,由可知,,因為為中點,所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點睛】雙曲線的離心率是橢圓最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)15、或【解析】首先判斷漸近線的傾斜角,再求的值.【詳解】由條件可知雙曲線的其中一條漸近線方程是,因為兩條漸近線的夾角是,所以直線的傾斜角是或,即或.故答案為:或16、【解析】根據(jù)等差數(shù)列的求和公式和等差數(shù)列的性質(zhì)即可求出.【詳解】因為等差數(shù)列的前項和為,,則,故答案為:33.【點睛】本題考查了等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進(jìn)行求解,根據(jù)已知條件,以AD中點O為原點,OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問1詳解】如圖,取PD中點F,連接EF,F(xiàn)C﹒∵E是AP中點,∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問2詳解】取AD中點O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O(shè)原點,OB、OD、OP分別為x、y、z軸,建立空間直角坐標(biāo)系Oxyz,如圖:設(shè)|BC|=1,則B(1,0,0),D(0,1,0),E(0,),P(0,0,1),則,設(shè)平面BED的法向量為,平面PBD的法向量為則,取,,取設(shè)二面角的大小為θ,則cosθ=﹒18、(1)(2)【解析】(1)先求得直線和直線的交點坐標(biāo),再用點斜式求得直線的方程.(2)設(shè)圓的標(biāo)準(zhǔn)方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標(biāo)準(zhǔn)方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,則,所以圓的標(biāo)準(zhǔn)方程為.19、(1)焦點坐標(biāo)為,,頂點坐標(biāo)為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對應(yīng)寫出焦點坐標(biāo)、頂點坐標(biāo)和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結(jié)果.【詳解】(1)當(dāng)時,雙曲線方程化為,所以,,,所以焦點坐標(biāo)為,,頂點坐標(biāo)為,,漸近線方程為.(2)因為,所以,解得,所以實數(shù)的取值范圍是【點睛】本題根據(jù)雙曲線方程求焦點坐標(biāo)、頂點坐標(biāo)和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解能力,屬基礎(chǔ)題.20、(1)見解析;(2)【解析】(1)利用定義法證明是一個與n無關(guān)的非零常數(shù),從而得出結(jié)論;(2)由(1)求出,利用分組求和法求【詳解】(1)由得,所以,所以是首項為,公比為的等比數(shù)列,,所以,(2)由(1)知的通項公式為;則所以【點睛】本題主要考查等比數(shù)列的證明以及分組求和法,屬于基礎(chǔ)題21、(1)詳解解析;(2)存在.【解析】(1)利用勾股定理證得,結(jié)合線面垂直的判定定理即可證得結(jié)論;(2)以A為原點建立空間直角坐標(biāo)系,設(shè)點,,求得平面的法向量,利用已知條件建立關(guān)于的方程,進(jìn)而得解.【小問1詳解】取中點為,連接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小問2詳解】以A為坐標(biāo)原點,以為x軸,為y軸,為z軸建立空間直角坐標(biāo)系,則,,,,設(shè)點,因為點F在線段上,設(shè),,,設(shè)平面的法向量為,,,則,令,則,設(shè)直線CF與平面所成角為,,解得或(舍去),,此時點F是的三等分點,所以在線段上是存在一點,使直線與平面所成角的正弦值等于.22、(1);(2)【解析】(1)由題意可設(shè)拋物線的方程為y2=2px(p>0),運用拋物線的定義,可得23,解得p=2,進(jìn)而得到拋物線的方程;(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數(shù)的關(guān)系和弦長公式,算出|AB|;利用點到直線的距離公式算出點O到直線AB的距離,即可求出△AOB的面積【詳解】(1)拋物線C的頂點在原點,焦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 獨立董事2025年度履職評價與激勵措施合同3篇
- 二零二五年度禾青幼兒園教玩具采購與幼兒園設(shè)施維護(hù)合同3篇
- 二零二五搬家公司合同模板:搬家保險責(zé)任與賠償條款2篇
- 二零二五版物流行業(yè)預(yù)付款擔(dān)保合同2篇
- 二零二五版搬家服務(wù)與家政服務(wù)融合合同樣本2篇
- 二零二五年度蔬菜電子商務(wù)合同:線上銷售平臺與賣家之間的規(guī)則2篇
- 二零二五版汽車零部件購銷合同標(biāo)準(zhǔn)及售后服務(wù)模板3篇
- 二零二五年度國際教育機(jī)構(gòu)合作辦學(xué)合同3篇
- 二零二五年度高壓變壓器安裝及安全防護(hù)技術(shù)合同3篇
- 二零二五版社保繳納與工傷保險待遇保障合同3篇
- ICU常見藥物課件
- CNAS實驗室評審不符合項整改報告
- 農(nóng)民工考勤表(模板)
- 承臺混凝土施工技術(shù)交底
- 臥床患者更換床單-軸線翻身
- 計量基礎(chǔ)知識培訓(xùn)教材201309
- 中考英語 短文填詞、選詞填空練習(xí)
- 一汽集團(tuán)及各合資公司組織架構(gòu)
- 阿特拉斯基本擰緊技術(shù)ppt課件
- 初一至初三數(shù)學(xué)全部知識點
- 新課程理念下的班主任工作藝術(shù)
評論
0/150
提交評論