湖南省婁底市2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
湖南省婁底市2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
湖南省婁底市2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
湖南省婁底市2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
湖南省婁底市2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省婁底市2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切2.已知直線與圓相交于,兩點,則的取值范圍為()A. B.C. D.3.函數(shù)在(0,e]上的最大值為()A.-1 B.1C.0 D.e4.過點且垂直于直線的直線方程是()A. B.C. D.5.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C.與相等 D.6.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.8.已知空間向量,則()A. B.C. D.9.已知雙曲線,則雙曲線的漸近線方程為()A. B.C. D.10.正方體的棱長為,為側(cè)面內(nèi)動點,且滿足,則△面積的最小值為()A. B.C. D.11.在四棱錐中,底面ABCD是正方形,E為PD中點,若,,,則()A. B.C. D.12.已知雙曲線的左、右焦點分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓心坐標(biāo)為圓被直線截得的弦長為,則圓的半徑為______.14.已知、是橢圓的兩個焦點,點在橢圓上,且,,則橢圓離心率是___________15.在△ABC中,,AB=3,,則________16.如圖,在平行六面體中,設(shè),N是的中點,則向量_________.(用表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點的直線與橢圓相交于、兩點.(1)求橢圓的方程;(2)若以為直徑的圓過坐標(biāo)原點,求的值.18.(12分)我們知道:當(dāng)是圓O:上一點,則圓O的過點的切線方程為;當(dāng)是圓O:外一點,過作圓O的兩條切線,切點分別為,則方程表示直線AB的方程,即切點弦所在直線方程.請利用上述結(jié)論解決以下問題:已知圓C的圓心在x軸非負(fù)半軸上,半徑為3,且與直線相切,點在直線上,過點作圓C的兩條切線,切點分別為.(1)求圓C的方程;(2)當(dāng)時,求線段AB的長;(3)當(dāng)點在直線上運動時,求線段AB長度的最小值.19.(12分)已知橢圓過點,且離心率.(1)求橢圓的方程;(2)設(shè)直交橢圓于兩點,判斷點與以線段為直徑的圓的位置關(guān)系,并說明理由.20.(12分)某種機械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設(shè)備的使用年限(單位:年)與失效費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與的關(guān)系.請用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機械設(shè)備使用8年的失效費參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據(jù):,,21.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),直線l與x軸交于點P.以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于A,B兩點,求的值22.(10分)已知函數(shù).(1)當(dāng)時,證明:存在唯一的零點;(2)若,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求出兩圓的圓心及半徑,求出圓心距,從而可得出結(jié)論.【詳解】解:圓的圓心為,半徑為,圓圓心為,半徑為,則兩圓圓心距,因為,所以兩圓相交.故選:A.2、C【解析】求得直線恒過的定點,找出弦長取得最值的狀態(tài),利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點,又,故點在圓內(nèi),又圓的圓心為則,此時直線過圓心;當(dāng)直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.3、A【解析】對函數(shù)求導(dǎo),然后求出函數(shù)的單調(diào)區(qū)間,從而可求出函數(shù)的最大值【詳解】由,得,當(dāng)時,,當(dāng),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時,取得最大值,故選:A4、A【解析】根據(jù)所求直線垂直于直線,設(shè)其方程為,然后將點代入求解.【詳解】因為所求直線垂直于直線,所以設(shè)其方程為,又因為直線過點,所以,解得所以直線方程為:,故選:A.5、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D6、A【解析】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),計算三個數(shù)判斷作答.【詳解】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應(yīng)輸出的x值為.故選:A7、C【解析】按照程序框圖的流程進(jìn)行計算.【詳解】,故輸出S的值為.故選:C8、A【解析】求得,即可得出.【詳解】,,,.故選:A.9、A【解析】求出、的值,可得出雙曲線的漸近線方程.【詳解】在雙曲線中,,,因此,該雙曲線的漸近線方程為.故選:A.10、B【解析】建立空間直角坐標(biāo)系如圖所示,設(shè)由,得出點的軌跡方程,由幾何性質(zhì)求得,再根據(jù)垂直關(guān)系求出△面積的最小值【詳解】以點為原點,分別為軸建立空間直角坐標(biāo)系,如圖所示:則,,設(shè)所以,得,所以因為平面,所以故△面積的最小值為故選:B11、C【解析】根據(jù)向量線性運算法則計算即可.【詳解】故選:C12、D【解析】直線的斜率為,計算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點睛】本題考查了雙曲線的漸近線,與圓的關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力和計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用垂徑定理計算即可.【詳解】設(shè)圓的半徑為,則,得.故答案為:.14、【解析】先由,根據(jù)橢圓的定義,求出,,再由余弦定理,根據(jù),即可列式求出離心率.【詳解】因為點在橢圓上,所以,又,所以,因,在中,由,根據(jù)余弦定理可得,解得(負(fù)值舍去)故答案為:.【點睛】本題主要考查求橢圓的離心率,屬于??碱}型.15、3【解析】計算得出,可得出,再利用平面向量數(shù)量積的運算性質(zhì)可求得結(jié)果.【詳解】∵,,,∴故答案為:3.16、【解析】根據(jù)向量的加減法運算法則及數(shù)乘運算求解即可.【詳解】由向量的減法及加法運算可得,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由離心率得到,由橢圓的短軸端點與雙曲線的焦點重合,得到,進(jìn)而可求出結(jié)果;(2)先由題意,得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,設(shè),根據(jù)韋達(dá)定理,得到,,再由以為直徑的圓過坐標(biāo)原點,得到,進(jìn)而可求出結(jié)果.詳解】(1)由題意知,∴,即,又雙曲線的焦點坐標(biāo)為,橢圓的短軸端點與雙曲線的焦點重合,所以,∴,故橢圓的方程為.(2)解:由題意知直線的斜率存在,設(shè)直線的方程為由得:由得:設(shè),則,,∴因為以為直徑的圓過坐標(biāo)原點,所以,.滿足條件故.【點睛】本題主要考查橢圓的方程,以及橢圓的應(yīng)用,熟記橢圓的標(biāo)準(zhǔn)方程,以及橢圓的簡單性質(zhì)即可,解決此類問題時,通常需要聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理、判別式等求解,屬于??碱}型.18、(1);(2);(3)4.【解析】(1)根據(jù)圓圓心和半徑設(shè)圓的標(biāo)準(zhǔn)方程為,利用圓心到切線的距離等于圓的半徑即可求出a;(2)根據(jù)題意寫出AB的方程,根據(jù)垂徑定理即可求出弦長;(3)根據(jù)題意求出AB經(jīng)過的定點Q,當(dāng)CQ垂直于AB時,AB最短.【小問1詳解】由題,設(shè)圓C的標(biāo)準(zhǔn)方程為,則,解得.故圓C方程為;【小問2詳解】根據(jù)題意可知,直線的方程為,即,圓心C到直線的距離為,故弦長;【小問3詳解】設(shè),則,又直線方程為:,故直線過定點Q,設(shè)圓心C到直線距離為,則,故當(dāng)最大時,最短,而,故與垂直時最大,此時,,∴線段長度的最小值4.19、(1)(2)點G在以AB為直徑的圓外【解析】解法一:(Ⅰ)由已知得解得所以橢圓E的方程為(Ⅱ)設(shè)點AB中點為由所以從而.所以.,故所以,故G在以AB為直徑的圓外解法二:(Ⅰ)同解法一.(Ⅱ)設(shè)點,則由所以從而所以不共線,所以銳角.故點G在以AB為直徑的圓外考點:1、橢圓的標(biāo)準(zhǔn)方程;2、直線和橢圓的位置關(guān)系;3、點和圓的位置關(guān)系20、(1)答案見解析;(2);失效費為6.3萬元【解析】(1)根據(jù)相關(guān)系數(shù)公式計算出相關(guān)系數(shù)可得結(jié)果;(2)根據(jù)公式求出和可得關(guān)于的線性回歸方程,再代入可求出結(jié)果.【詳解】(1)由題意,知,,∴結(jié)合參考數(shù)據(jù)知:因為與的相關(guān)系數(shù)近似為0.99,所以與的線性相關(guān)程度相當(dāng)大,從而可以用線性回歸模型擬合與的關(guān)系(2)∵,∴∴關(guān)于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機械設(shè)備使用8年的失效費為6.3萬元21、(1)直線l的普通方程,曲線C的直角坐標(biāo)方程(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系,在參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果【小問1詳解】解:直線的參數(shù)方程為為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程,曲線的極坐標(biāo)方程為,根據(jù),轉(zhuǎn)換為直角坐標(biāo)方程為;小問2詳解】直線轉(zhuǎn)換為參數(shù)方程為為參數(shù)),代入,得到,所以,,所以22、(1)證明見解析;(2)【解析】(1)當(dāng)時,求導(dǎo)得到,判斷出函數(shù)的單調(diào)性,求出最值,可證得命題成立;(2)當(dāng)且時,不滿足題意,故,又定義域為,講不等式化簡,參變分離后構(gòu)造新函數(shù),求導(dǎo)判斷單調(diào)性并求出最值,可得實數(shù)的取值范圍【詳解】(1)函數(shù)的定義域為,當(dāng)時,由,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;.且,故存在唯一的零點;(2)當(dāng)時,不滿足恒成立,故由定義域為,可得,令,則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論