版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年云南省昭通市高三預(yù)測密卷:數(shù)學(xué)試題試卷解析注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若集合,,則=()A. B. C. D.2.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.323.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.4.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽(yù)國內(nèi)外.據(jù)統(tǒng)計(jì),煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.95445.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標(biāo)為,則的最小值是()A. B. C. D.7.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切8.如圖,四邊形為平行四邊形,為中點(diǎn),為的三等分點(diǎn)(靠近)若,則的值為()A. B. C. D.9.在復(fù)平面內(nèi),復(fù)數(shù)(,)對應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.1610.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.11.已知雙曲線滿足以下條件:①雙曲線E的右焦點(diǎn)與拋物線的焦點(diǎn)F重合;②雙曲線E與過點(diǎn)的冪函數(shù)的圖象交于點(diǎn)Q,且該冪函數(shù)在點(diǎn)Q處的切線過點(diǎn)F關(guān)于原點(diǎn)的對稱點(diǎn).則雙曲線的離心率是()A. B. C. D.12.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某大學(xué)、、、四個不同的專業(yè)人數(shù)占本校總?cè)藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個專業(yè)的總?cè)藬?shù)中抽取人調(diào)查畢業(yè)后的就業(yè)情況,則專業(yè)應(yīng)抽取_________人.14.已知橢圓的離心率是,若以為圓心且與橢圓有公共點(diǎn)的圓的最大半徑為,此時橢圓的方程是____.15.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為______.16.設(shè)滿足約束條件且的最小值為7,則=_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)有兩個零點(diǎn).(1)求的取值范圍;(2)是否存在實(shí)數(shù),對于符合題意的任意,當(dāng)時均有?若存在,求出所有的值;若不存在,請說明理由.18.(12分)已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結(jié)束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產(chǎn)品需要費(fèi)用元,設(shè)表示直到檢測出件次品或者檢測出件正品時所需要的檢測費(fèi)用(單位:元),求的分布列.19.(12分)如圖,在三棱柱中,、、分別是、、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.20.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.21.(12分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.22.(10分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍:(2)若,記的兩個極值點(diǎn)為,,記的最大值與最小值分別為M,m,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】試題分析:化簡集合故選C.考點(diǎn):集合的運(yùn)算.2、B【解析】
由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解。【詳解】由題意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!军c(diǎn)睛】本題考查了幾何體的三視圖及體積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解。3、C【解析】
由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點(diǎn)睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡單題.4、C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,,,則,,所以,.故果實(shí)直徑在內(nèi)的概率為0.8185.故選:C【點(diǎn)睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎(chǔ)題.5、D【解析】
根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點(diǎn)睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.6、C【解析】
在對稱軸處取得最值有,結(jié)合,可得,易得曲線的解析式為,結(jié)合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)性質(zhì)的應(yīng)用,涉及到函數(shù)的平移、函數(shù)的對稱性,考查學(xué)生數(shù)形結(jié)合、數(shù)學(xué)運(yùn)算的能力,是一道中檔題.7、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.8、D【解析】
使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點(diǎn)睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題.9、D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.10、B【解析】
由可得,所以,故選B.11、B【解析】
由已知可求出焦點(diǎn)坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點(diǎn)通過導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點(diǎn)坐標(biāo),然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點(diǎn)為,F(xiàn)關(guān)于原點(diǎn)的對稱點(diǎn);,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點(diǎn)睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點(diǎn)坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問題和解決問題的能力,難度一般.12、C【解析】
設(shè)M,N,P分別為和的中點(diǎn),得出的夾角為MN和NP夾角或其補(bǔ)角,根據(jù)中位線定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫出圖形:設(shè)M,N,P分別為和的中點(diǎn),則的夾角為MN和NP夾角或其補(bǔ)角可知,.作BC中點(diǎn)Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點(diǎn)睛】此題考查異面直線夾角,關(guān)鍵點(diǎn)通過平移將異面直線夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出專業(yè)人數(shù)在、、、四個專業(yè)總?cè)藬?shù)的比例后可得.【詳解】由題意、、、四個不同的專業(yè)人數(shù)的比例為,故專業(yè)應(yīng)抽取的人數(shù)為.故答案為:1.【點(diǎn)睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.14、【解析】
根據(jù)題意設(shè)為橢圓上任意一點(diǎn),表達(dá)出,再根據(jù)二次函數(shù)的對稱軸與求解的關(guān)系分析最值求解即可.【詳解】因?yàn)闄E圓的離心率是,,所以,故橢圓方程為.因?yàn)橐詾閳A心且與橢圓有公共點(diǎn)的圓的最大半徑為,所以橢圓上的點(diǎn)到點(diǎn)的距離的最大值為.設(shè)為橢圓上任意一點(diǎn),則.所以因?yàn)榈膶ΨQ軸為.(i)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.此時,解得.(ii)當(dāng)時,在上單調(diào)遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【點(diǎn)睛】本題主要考查了橢圓上的點(diǎn)到定點(diǎn)的距離最值問題,需要根據(jù)題意設(shè)橢圓上的點(diǎn),再求出距離,根據(jù)二次函數(shù)的對稱軸與區(qū)間的關(guān)系分析最值的取值點(diǎn)分類討論求解.屬于中檔題.15、2【解析】
根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、3【解析】
根據(jù)約束條件畫出可行域,再把目標(biāo)函數(shù)轉(zhuǎn)化為,對參數(shù)a分類討論,當(dāng)時顯然不滿足題意;當(dāng)時,直線經(jīng)過可行域中的點(diǎn)A時,截距最小,即z有最小值,再由最小值為7,得出結(jié)果;當(dāng)時,的截距沒有最小值,即z沒有最小值;當(dāng)時,的截距沒有最大值,即z沒有最小值,綜上可得出結(jié)果.【詳解】根據(jù)約束條件畫出可行域如下:由,可得出交點(diǎn),由可得,當(dāng)時顯然不滿足題意;當(dāng)即時,由可行域可知當(dāng)直線經(jīng)過可行域中的點(diǎn)A時,截距最小,即z有最小值,即,解得或(舍);當(dāng)即時,由可行域可知的截距沒有最小值,即z沒有最小值;當(dāng)即時,根據(jù)可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時.故答案為:3.【點(diǎn)睛】本題主要考查線性規(guī)劃問題,約束條件和目標(biāo)函數(shù)中都有參數(shù),要對參數(shù)進(jìn)行討論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)對求導(dǎo),對參數(shù)進(jìn)行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點(diǎn)解得,轉(zhuǎn)化不等式得,令,化簡得,因此,,最后根據(jù)導(dǎo)數(shù)研究對應(yīng)函數(shù)單調(diào)性,確定對應(yīng)函數(shù)最值,即得取值集合.【詳解】(1),當(dāng)時,對恒成立,與題意不符,當(dāng),,∴時,即函數(shù)在單調(diào)遞增,在單調(diào)遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時,時,∴,令,若,則時,,即函數(shù)在單調(diào)遞減,∴,與不符;若,則時,,即函數(shù)在單調(diào)遞減,∴,與式不符;若,解得,此時恒成立,,即函數(shù)在單調(diào)遞增,又,∴時,;時,符合式,綜上,存在唯一實(shí)數(shù)符合題意.【點(diǎn)睛】利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.18、(1);(2)見解析.【解析】
(1)利用獨(dú)立事件的概率乘法公式可計(jì)算出所求事件的概率;(2)由題意可知隨機(jī)變量的可能取值有、、,計(jì)算出隨機(jī)變量在不同取值下的概率,由此可得出隨機(jī)變量的分布列.【詳解】(1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件,則;(2)由題意可知,隨機(jī)變量的可能取值為、、.則,,.故的分布列為【點(diǎn)睛】本題考查概率的計(jì)算,同時也考查了隨機(jī)變量分布列,考查計(jì)算能力,屬于基礎(chǔ)題.19、(1)證明見解析;(2).【解析】
(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導(dǎo)出平面,并計(jì)算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),、分別為、的中點(diǎn),則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點(diǎn),,,平面,且,因此,到平面的距離為.【點(diǎn)睛】本題考查線面平行的證明,同時也考查了點(diǎn)到平面距離的計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.20、(1),(2)【解析】
(1)根據(jù)與可求得,再根據(jù)等比數(shù)列的基本量求解即可.(2)由(1)可得,再利用錯位相減求和即可.【詳解】解:(1)依題意,,設(shè)數(shù)列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解以及錯位相減求和等.屬于中檔題.21、【解析】
將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因?yàn)橄嗲?所以圓心到直線的距離等于半徑,即解得.【點(diǎn)睛】本題考查極坐標(biāo)方程與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專項(xiàng)消防設(shè)備增設(shè)協(xié)議樣本版A版
- 2025年度廠房裝飾裝修工程節(jié)能合同范本4篇
- 2025年度創(chuàng)新產(chǎn)業(yè)園廠房轉(zhuǎn)租服務(wù)合同標(biāo)準(zhǔn)4篇
- 做菜知識培訓(xùn)課件圖片
- 二零二五年度體育場館建設(shè)擔(dān)保協(xié)議3篇
- 2025年度高原地區(qū)柴油發(fā)電機(jī)組銷售及售后服務(wù)合同3篇
- 《社區(qū)調(diào)解實(shí)務(wù)講解》課件
- 2024年04月河南鄭州銀行信息科技部社會招考筆試歷年參考題庫附帶答案詳解
- 個人對公司長期借款合同(2024年版)
- 專業(yè)美甲技術(shù)勞務(wù)合作協(xié)議樣本(2024版)版B版
- 科室醫(yī)療質(zhì)量與安全管理小組工作制度
- 中華民族共同體概論課件第五講大一統(tǒng)與中華民族共同體初步形成(秦漢時期)
- 初二生地會考試卷及答案-文檔
- 私營企業(yè)廉潔培訓(xùn)課件
- 施工單位值班人員安全交底和要求
- 中國保險(xiǎn)用戶需求趨勢洞察報(bào)告
- 數(shù)字化轉(zhuǎn)型指南 星展銀行如何成為“全球最佳銀行”
- 中餐烹飪技法大全
- 靈芝孢子油減毒作用課件
- 現(xiàn)場工藝紀(jì)律檢查表
- 醫(yī)院品管圈與護(hù)理質(zhì)量持續(xù)改進(jìn)PDCA案例降低ICU病人失禁性皮炎發(fā)生率
評論
0/150
提交評論