重慶市彭水縣第一中學2023年高二上數(shù)學期末達標檢測試題含解析_第1頁
重慶市彭水縣第一中學2023年高二上數(shù)學期末達標檢測試題含解析_第2頁
重慶市彭水縣第一中學2023年高二上數(shù)學期末達標檢測試題含解析_第3頁
重慶市彭水縣第一中學2023年高二上數(shù)學期末達標檢測試題含解析_第4頁
重慶市彭水縣第一中學2023年高二上數(shù)學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

重慶市彭水縣第一中學2023年高二上數(shù)學期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.2.已知實數(shù),,則下列不等式恒成立的是()A. B.C. D.3.設P為橢圓C:上一點,,分別為左、右焦點,且,則()A. B.C. D.4.圓與圓的位置關(guān)系是()A.內(nèi)含 B.相交C.外切 D.外離5.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學組織了“黨史知識競賽”活動,已知該校共有高中學生1000人,用分層抽樣的方法從該校高中學生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學生人數(shù)為()A.960 B.720C.640 D.3206.設,,若,其中是自然對數(shù)底,則()A. B.C. D.7.設變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.138.如圖,在三棱柱中,為的中點,若,,,則下列向量與相等的是()A. B.C. D.9.已知,,若,則實數(shù)的值為()A. B.C. D.10.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組的可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.11.在等比數(shù)列中,,,則()A.2 B.4C.6 D.812.橢圓以坐標軸為對稱軸,經(jīng)過點,且長軸長是短軸長的倍,則橢圓的標準方程為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.記為等比數(shù)列的前n項和,若,公比,則______14.設函數(shù)為奇函數(shù),當時,,則_______15.曲線在點處的切線方程為__________.16.一條光線從點射出,經(jīng)x軸反射,其反射光線所在直線與圓相切,則反射光線所在的直線方程為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學共有名學生,其中高一年級有名學生,為了解學生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學生,依據(jù)每名學生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學生人數(shù)及圖中的值;(2)估計樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計全校睡眠時間超過個小時的學生人數(shù).18.(12分)已知點在橢圓:上,橢圓E的離心率為.(1)求橢圓E的方程;(2)若不平行于坐標軸且不過原點O的直線l與橢圓E交于B,C兩點,判斷是否可能為等邊三角形,并說明理由.19.(12分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點,求二面角的余弦值.20.(12分)已知直線:和:(1)若,求實數(shù)m的值;(2)若,求實數(shù)m的值21.(12分)已知數(shù)列的首項,且滿足.(1)求證:數(shù)列為等差數(shù)列;(2)設,求數(shù)列的前項和.22.(10分)如圖,在棱長為的正方體中,為中點(1)求二面角的大??;(2)探究線段上是否存在點,使得平面?若存在,確定點的位置;若不存在,說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】雙曲線的離心率為,漸進性方程為,計算得,故漸進性方程為.【考點定位】本小題考查了離心率和漸近線等雙曲線的性質(zhì).2、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個選項得到答案.【詳解】當時,不等式不成立,錯誤;,故錯誤正確;當時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學生對于不等式知識的綜合應用.3、B【解析】根據(jù)橢圓的定義寫出,再根據(jù)條件即可解得答案.【詳解】根據(jù)P為橢圓C:上一點,則有,又,所以,故選:B.4、C【解析】分別求出兩圓的圓心、半徑,再求出兩圓的圓心距即可判斷作答.【詳解】圓的圓心,半徑,圓,即的圓心,半徑,則,即有,所以圓與圓外切.故選:C5、D【解析】由分層抽樣各層成比例計算即可【詳解】設高二年級學生人數(shù)為,則,解得故選:D6、A【解析】利用函數(shù)的單調(diào)性可得正確的選項.【詳解】令,因為均為,故為上的增函數(shù),由可得,故,故選:A.7、C【解析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點時截距最小,求出點A坐標,代入目標式即可.【詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點時截距最小,由,得,則.故選:C.8、A【解析】利用空間向量基本定理求解即可【詳解】由于M是的中點,所以故選:A9、A【解析】由,得,從而可得答案.【詳解】解:因為,所以,即,解得.故選:A.10、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A11、D【解析】由等比中項轉(zhuǎn)化得,可得,求解基本量,由等比數(shù)列通項公式即得解【詳解】設公比為,則由,得,即故,解得故選:D12、C【解析】分情況討論焦點所在位置及橢圓方程.【詳解】當橢圓的焦點在軸上時,由題意過點,故,,橢圓方程為,當橢圓焦點在軸上時,,,橢圓方程為,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)給定條件列式求出數(shù)列的首項即可計算作答.【詳解】依題意,,解得,所以.故答案為:414、【解析】由奇函數(shù)的定義可得,代入解析式即可得解.【詳解】函數(shù)為奇函數(shù),當時,,所以.故答案為-1.【點睛】本題主要考查了奇函數(shù)的求值問題,屬于基礎題.15、【解析】先求導數(shù),再根據(jù)導數(shù)幾何意義得切線斜率,最后根據(jù)點斜式求切線方程.【詳解】函數(shù)的導數(shù)為,所以切線的斜率,切點為,則切線方程為故答案為:【點睛】易錯點睛:求曲線的切線要注意“過點P的切線”與“在點P處的切線”的差異,過點P的切線中,點P不一定是切點,點P也不一定在已知曲線上,而在點P處的切線,必以點P為切點,考查學生的運算能力,屬于基礎題.16、或【解析】點關(guān)于軸的對稱點為,即反射光線過點,分別討論反射光線的斜率存在與不存在的情況,進而求解即可【詳解】點關(guān)于軸的對稱點為,(1)設反射光線的斜率為,則反射光線的方程為,即,因為反射光線與圓相切,所以圓心到反射光線的距離,即,解得,所以反射光線方程為:;(2)當不存在時,反射光線,此時,也與圓相切,故答案為:或【點睛】本題考查直線在光學中的應用,考查圓的切線方程三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)樣本中高一年級學生的人數(shù)為,;(2);(3).【解析】(1)利用分層抽樣可求得樣本中高一年級學生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計算出全校睡眠時間超過個小時的學生人數(shù).【小問1詳解】解:樣本中高一年級學生的人數(shù)為.,解得.【小問2詳解】解:設中位數(shù)為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時間超過個小時的學生人數(shù)約為.18、(1)(2)三角形不可能是等邊三角形,理由見解析【解析】(1)根據(jù)點坐標和離心率可得橢圓方程;(2)假設為等邊三角形,設,與橢圓方程聯(lián)立,由韋達定理得的中點的坐標,,利用得出矛盾.小問1詳解】由點在橢圓上,得,即,又,即,解得,所以橢圓的方程為.【小問2詳解】假設為等邊三角形,設,,聯(lián)立,消去得,由韋達定理得,由得,故,所以的中點為,所以,故,與等邊三角形中矛盾,所以假設不成立,故三角形不可能是等邊三角形.19、(1)證明見解析(2)【解析】(1)根據(jù)條件先證明,再根據(jù)線面平行的判定定理證明平面PAD;(2)確定坐標原點,建立空間直角坐標系,從而求出相關(guān)的點的坐標,進而求得相關(guān)向量的坐標,再求相關(guān)平面的法向量,根據(jù)向量的夾角公式求得結(jié)果.【小問1詳解】證明:由已知為等邊三角形,且,所以又因為,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小問2詳解】解:取的中點,連接,則,由(1)知,所以,分別以,,為,,軸建立空間直角坐標系.則,,,所以,由已知可知平面ABCD的一個法向量設平面的一個法向量為,由,即,得,令,則,所以,由圖形可得二面角為銳角,所以二面角的余弦值為.20、(1)2(2)或【解析】(1)易知兩直線的斜率存在,根據(jù),由斜率相等求解.(2)分和,根據(jù),由直線的斜率之積為-1求解.【小問1詳解】由直線的斜率存在,且為,則直線的斜率也存在,且為,因為,所以,解得或2,①當時,由此時直線,重合,②當時,,此時直線,平行,綜上:若,則實數(shù)m的值為2【小問2詳解】①當時,直線斜率為0,此時若必有,不可能.②當時,若必有,解得,由上知若,則實數(shù)m的值為或21、(1)證明見解析(2)【解析】(1)化簡得到,由此證得數(shù)列為等差數(shù)列.(2)先求得,然后利用錯位相減求和法求得.【小問1詳解】.又數(shù)列是以1為首項,4為公差等差數(shù)列.【小問2詳解】由(1)知:,則數(shù)列的通項公式為,則,①,②,①-②得:,,,,.22、(1)(2)點為線段上靠近點的三等分點【解析】(1)建立空間直角坐標系,分別寫出點的坐標,求出兩個平面的法向量代入公式求解即可;(2)假設存在,設,利用相等向量求出坐標,利用線面平行的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論