天津南開中學(xué)2024屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
天津南開中學(xué)2024屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
天津南開中學(xué)2024屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
天津南開中學(xué)2024屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
天津南開中學(xué)2024屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

天津南開中學(xué)2024屆數(shù)學(xué)高二上期末經(jīng)典試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在數(shù)列中抽取部分項(按原來的順序)構(gòu)成一個新數(shù)列,記為,再在數(shù)列插入適當(dāng)?shù)捻?,使它們一起能?gòu)成一個首項為1,公比為3的等比數(shù)列.若,則數(shù)列中第項前(不含)插入的項的和最小為()A.30 B.91C.273 D.8202.已知:,:,若是的充分不必要條件,則實數(shù)的取值范圍是()A. B.C. D.3.命題“,”的否定是A, B.,C., D.,4.若,則x的值為()A.4 B.6C.4或6 D.85.若1,m,9三個數(shù)成等比數(shù)列,則圓錐曲線的離心率是()A.或 B.或2C.或 D.或26.已知,,若直線上存在點P,滿足,則l的傾斜角的取值范圍是()A. B.C D.7.已知函數(shù)的導(dǎo)數(shù)為,且滿足,則()A. B.C. D.8.已知等差數(shù)列的前項和為,若,,則()A. B.C. D.9.直線的傾斜角為()A.0 B.C. D.10.經(jīng)過點A(0,-3)且斜率為2的直線方程為()A. B.C. D.11.《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.12.命題“,”的否定是A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項均為正數(shù),記為的前n項和,從下面①②③中選取兩個作為條件,證明另外一個成立①數(shù)列是等差數(shù)列:②數(shù)列是等差數(shù)列;③注:若選擇不同的組合分別解答,則按第一個解答計分14.如圖,一個酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個表面積為的玻璃球,則球面上的點到杯底的最小距離為______cm;②在杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)15.某幾何體的三視圖如圖所示,則該幾何體的體積為______.16.已知實數(shù),,,滿足,,,則的最大值是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線.(1)若,求直線與直線交點坐標(biāo);(2)若直線與直線垂直,求a的值.18.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程19.(12分)某企業(yè)為響應(yīng)“安全生產(chǎn)”號召,將全部生產(chǎn)設(shè)備按設(shè)備安全系數(shù)分為A,兩個等級,其中等設(shè)備安全系數(shù)低于A等設(shè)備.企業(yè)定時對生產(chǎn)設(shè)備進(jìn)行檢修,并將部分等設(shè)備更新成A等設(shè)備.據(jù)統(tǒng)計,2020年底該企業(yè)A等設(shè)備量已占全體設(shè)備總量的30%.從2021年開始,企業(yè)決定加大更新力度,預(yù)計今后每年將16%的等設(shè)備更新成A等設(shè)備,與此同時,4%的A等設(shè)備由于設(shè)備老化將降級成等設(shè)備.(1)在這種更新制度下,在將來的某一年該企業(yè)的A等設(shè)備占全體設(shè)備的比例能否超過80%?請說明理由;(2)至少在哪一年底,該企業(yè)的A等設(shè)備占全體設(shè)備的比例超過60%.(參考數(shù)據(jù):,,)20.(12分)如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.(1)求證:平面;(2)求二面角的正弦值;(3)設(shè)為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.21.(12分)已知等差數(shù)列滿足,,的前項和為.(1)求及;(2)令,求數(shù)列的前項和.22.(10分)某項目的建設(shè)過程中,發(fā)現(xiàn)其補貼額x(單位:百萬元)與該項目的經(jīng)濟(jì)回報y(單位:千萬元)之間存在著線性相關(guān)關(guān)系,統(tǒng)計數(shù)據(jù)如下表:補貼額x(單位:百萬元)23456經(jīng)濟(jì)回報y(單位:千萬元)2.5344.56(1)請根據(jù)上表所給的數(shù)據(jù),求出y關(guān)于x的線性回歸直線方程;(2)為高質(zhì)量完成該項目,決定對負(fù)責(zé)該項目的7名工程師進(jìn)行考核.考核結(jié)果為4人優(yōu)秀,3人合格.現(xiàn)從這7名工程師中隨機(jī)抽取3人,用X表示抽取的3人中考核優(yōu)秀的人數(shù),求隨機(jī)變量X的分布列與期望.參考公式:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先根據(jù)等比數(shù)列的通項公式得到,列出數(shù)列的前6項,將其中是數(shù)列的項的所有數(shù)去掉即可求解.【詳解】因為是以1為首項、3為公比的等比數(shù)列,所以,則由,得,即數(shù)列中前6項分別為:1、3、9、27、81、243,其中1、9、81是數(shù)列的項,3、27、243不是數(shù)列的項,且,所以數(shù)列中第7項前(不含)插入的項的和最小為.故選:C.2、C【解析】由是的充分不必要條件,則是的充分不必要條件,再根據(jù)對應(yīng)集合的包含關(guān)系可得答案.【詳解】由,即,設(shè),由是的充分不必要條件,則是的充分不必要條件所以,則故選:C3、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點:全稱命題與特稱命題4、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C5、D【解析】運用等比數(shù)列的性質(zhì)可得,再討論,,求出曲線的,,由離心率公式計算即可得到【詳解】三個數(shù)1,,9成等比數(shù)列,則,解得,,當(dāng)時,曲線為橢圓,則;當(dāng)時,曲線為為雙曲線,則離心率故選:6、A【解析】根據(jù)題意,求得直線恒過的定點,數(shù)形結(jié)合只需求得線段與直線有交點時的斜率,結(jié)合斜率和傾斜角的關(guān)系即可求得結(jié)果.【詳解】對直線,變形為,故其恒過定點,若直線存在點P,滿足,只需直線與線段有交點即可.數(shù)形結(jié)合可知,當(dāng)直線過點時,其斜率取得最大值,此時,對應(yīng)傾斜角;當(dāng)直線過點時,其斜率取得最小值,此時,對應(yīng)傾斜角為.根據(jù)斜率和傾斜角的關(guān)系,要滿足題意,直線的傾斜角的范圍為:.故選:A.7、C【解析】首先求出,再令即可求解.【詳解】由,則,令,則,所以.故選:C【點睛】本題主要考查了基本初等函數(shù)的導(dǎo)數(shù)以及導(dǎo)數(shù)的基本運算法則,屬于基礎(chǔ)題.8、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.9、D【解析】根據(jù)斜率與傾斜角的關(guān)系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.10、A【解析】直接代入點斜式方程求解即可詳解】因為直線經(jīng)過點且斜率為2,所以直線的方程為,即,故選:11、A【解析】根據(jù)平面,平面求解.【詳解】因為平面,平面,所以,又,,,所以,所以,故選:A12、C【解析】特稱命題的否定是全稱命題,改量詞,且否定結(jié)論,故命題的否定是“”.本題選擇C選項.二、填空題:本題共4小題,每小題5分,共20分。13、證明過程見解析【解析】選①②作條件證明③時,可設(shè)出,結(jié)合的關(guān)系求出,利用是等差數(shù)列可證;也可分別設(shè)出公差,寫出各自的通項公式后利用兩者的關(guān)系,對照系數(shù),得到等量關(guān)系,進(jìn)行證明.選①③作條件證明②時,根據(jù)等差數(shù)列的求和公式表示出,結(jié)合等差數(shù)列定義可證;選②③作條件證明①時,設(shè)出,結(jié)合的關(guān)系求出,根據(jù)可求,然后可證是等差數(shù)列;也可利用前兩項的差求出公差,然后求出通項公式,進(jìn)而證明出結(jié)論.【詳解】選①②作條件證明③:[方法一]:設(shè),則,當(dāng)時,;當(dāng)時,;因為也是等差數(shù)列,所以,解得;所以,,故.[方法二]:設(shè)等差數(shù)列的公差為d,等差數(shù)列的公差為,則,將代入,化簡得對于恒成立則有,解得.所以選①③作條件證明②:因為,是等差數(shù)列,所以公差,所以,即,因為,所以是等差數(shù)列.選②③作條件證明①:[方法一]:設(shè),則,當(dāng)時,;當(dāng)時,;因為,所以,解得或;當(dāng)時,,當(dāng)時,滿足等差數(shù)列的定義,此時為等差數(shù)列;當(dāng)時,,不合題意,舍去.綜上可知為等差數(shù)列.[方法二]【最優(yōu)解】:因為,所以,,因為也為等差數(shù)列,所以公差,所以,故,當(dāng)時,,當(dāng)時,滿足上式,故的通項公式為,所以,,符合題意.【整體點評】這類題型在解答題后可證是等差數(shù)列;法二:利用是等差數(shù)列即前兩項的差求出公差,然后求出的通項公式,利用,求出的通項公式,進(jìn)而證明出結(jié)論.14、①.②.【解析】根據(jù)題意,,進(jìn)而得,,故最小距離為;進(jìn)而建立坐標(biāo)系,得拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,此時設(shè)玻璃球軸截面所在圓的方程為,進(jìn)而只需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因為杯口放一個表面積為的玻璃球,所以球的半徑為,又因為杯口寬cm,所以如圖1所示,有,所以,所以,所以,又因為杯深8cm,即故最小距離為如圖1所示,建立直角坐標(biāo)系,易知,設(shè)拋物線的方程為,所以將代入得,故拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,如圖2,設(shè)玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點睛】本題考查拋物線的應(yīng)用,考查數(shù)學(xué)建模能力,運算求解能力,是中檔題.本題第二問解題的關(guān)鍵在于設(shè)出球觸及酒杯底部的軸截面圓的方程,進(jìn)而將問題轉(zhuǎn)化為拋物線上的點到圓心的距離大于等于半徑恒成立求解.15、【解析】根據(jù)三視圖還原幾何體,由此計算出幾何體的體積.【詳解】根據(jù)三視圖可知,該幾何體為如圖所示三棱錐,所以該幾何體的體積為.故答案為:16、10【解析】采用數(shù)形結(jié)合法,將所求問題轉(zhuǎn)化為兩點到直線的距離和的倍,結(jié)合梯形中位線性質(zhì)和三角形三邊關(guān)系可求得答案.【詳解】由,,,可知,點在圓上,由,即為等腰直角三角形,結(jié)合點到直線距離公式可理解為圓心到直線的距離,變形得,即所求問題可轉(zhuǎn)化為兩點到直線的距離和的倍,作于于,中點為,中點為,由梯形中位線性質(zhì)可得,,作于,于,連接,則,當(dāng)且僅當(dāng)與重合,三點共線時,有最大值,由點到直線距離公式可得,由幾何性質(zhì)可得,,此時,故的最大值為.故答案為:10.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)聯(lián)立兩直線方程,解方程組即可得解;(2)根據(jù)兩直線垂直列出方程,解之即可得出答案.【小問1詳解】解:當(dāng)時,直線,聯(lián)立,解得,即交點坐標(biāo)為;【小問2詳解】解:直線與直線垂直,則,解得.18、(1)(2)【解析】(1)先求得直線和直線的交點坐標(biāo),再用點斜式求得直線的方程.(2)設(shè)圓的標(biāo)準(zhǔn)方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標(biāo)準(zhǔn)方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,則,所以圓的標(biāo)準(zhǔn)方程為.19、(1)A等設(shè)備量不可能超過生產(chǎn)設(shè)備總量的80%,理由見解析;(2)在2025年底實現(xiàn)A等設(shè)備量超過生產(chǎn)設(shè)備總量的60%.【解析】(1)根據(jù)題意表示出2020年開始,經(jīng)過年后A等設(shè)備量占總設(shè)備量的百分比為,求出,根據(jù)的范圍進(jìn)行判斷;(2)令>即可求解.【小問1詳解】記該企業(yè)全部生產(chǎn)設(shè)備總量為“1”,2020年開始,經(jīng)過年后A等設(shè)備量占總設(shè)備量的百分比為,則經(jīng)過1年即2021年底該企業(yè)A等設(shè)備量,,可得,又所以數(shù)列是以為首項,公比為的等比數(shù)列,可得,所以,顯然有,所以A等設(shè)備量不可能超過生產(chǎn)設(shè)備總量的80%.【小問2詳解】由,得.因為單調(diào)遞減,又,,所以在2025年底實現(xiàn)A等設(shè)備量超過生產(chǎn)設(shè)備總量的60%.20、(1)證明見解析;(2);(3).【解析】(1)由已知證得,,,以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,根據(jù)向量垂直的坐標(biāo)表示和線面垂直的判定定理可得證;(2)根據(jù)二面角的空間向量求解方法可得答案;(3)設(shè),表示點Q,再利用線面角的空間向量求解方法,建立方程解得,可得答案.【詳解】(1)因為平面,平面,平面,所以,,又因為,則以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,由已知可得,,,,,,所以,,,因為,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作為平面的法向量,設(shè)平面的法向量因為,.所以,即,不妨設(shè),得.,又由圖示知二面角為銳角,所以二面角的正弦值為.(3)設(shè),即,,所以,即,因為直線與平面所成角的正弦值為,所以,即,解得,即.【點睛】本題考查利用空間向量求線面垂直、線面角、二面角的求法,向量法求二面角的步驟:建、設(shè)、求、算、取:1、建:建立空間直角坐標(biāo)系,以三條互相垂直的垂線的交點為原點;2、設(shè):設(shè)所需點的坐標(biāo),并得出所需向量的坐標(biāo);3、求:求出兩個面的法向量;4、算:運用向量的數(shù)量積運算,求兩個法向量的夾角的余弦值;5、?。焊鶕?jù)二面角的范圍和圖示得出的二面角是銳角還是鈍角,再取值.21、(1),;(2).【解析】(1)根據(jù)等差數(shù)列的通項公式及已知條件,,解方程組可得,,進(jìn)而可得等差數(shù)列的通項公式,再利用等差數(shù)列的前項和公式可得;(2)將數(shù)列的通項公式代入可得的通項公式,利用錯位相減法求和可得結(jié)果.【詳解】(1)設(shè)等差數(shù)列的首項為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論