版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省鳳慶縣第二中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.2.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓3.已知等比數(shù)列的前n項和為,若,,則()A.250 B.210C.160 D.904.設(shè)變量滿足約束條件,則的最大值為()A.0 B.C.3 D.45.已知拋物線的準(zhǔn)線方程為,則此拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.6.已知函數(shù),則()A.0 B.1C.2 D.7.已知是橢圓的左焦點,為橢圓上任意一點,點坐標(biāo)為,則的最大值為()A. B.13C.3 D.58.已知等差數(shù)列的前n項和為,且,,則為()A. B.C. D.9.已知橢圓與雙曲線有相同的焦點,且它們的離心率之積為1,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.10.已知圓,過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標(biāo)原點,則最大值為()A.3 B.4C.5 D.611.已知雙曲線,則雙曲線的離心率為()A. B.C. D.12.在等比數(shù)列中,若,則公比()A. B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與直線平行,則實數(shù)______14.圓心為直線與直線的交點,且過原點的圓的標(biāo)準(zhǔn)方程是________15.__________16.已知圓C,直線l:,若圓C上恰有四個點到直線l的距離都等于1.則b的取值范圍為___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,數(shù)列為等差數(shù)列,,前4項和.(1)求數(shù)列,的通項公式;(2)求和:.18.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在其定義域上是增函數(shù),求實數(shù)的取值范圍.19.(12分)如圖,四棱錐中,底面為矩形,底面,,點是棱的中點(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值20.(12分)如圖,在三棱錐中,平面平面,且,(1)求證:;(2)求直線與所成角的余弦值21.(12分)在矩形中,是的中點,是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說明理由;(2)若,求證:平面平面;(3)若是線段的中點,求證:直線平面;22.(10分)如圖,點分別在射線,上運動,且(1)求;(2)求線段的中點M的軌跡C的方程;(3)直線與,軌跡C及自上而下依次交于D,E,F(xiàn),G四點,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由向量線性運算得,利用數(shù)量積的定義和運算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.2、C【解析】根據(jù)兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:3、B【解析】設(shè)為等比數(shù)列,由此利用等比數(shù)列的前項和為能求出結(jié)果【詳解】設(shè),等比數(shù)列的前項和為為等比數(shù)列,為等比數(shù)列,解得故選:B4、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)的幾何意義,即可求出目標(biāo)函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因為目標(biāo)函數(shù),即,表示斜率為,截距為的直線,由圖可知,當(dāng)直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.5、D【解析】由已知設(shè)拋物線方程為,由題意可得,求出,從而可得拋物線的方程【詳解】因為拋物線的準(zhǔn)線方程為,所以設(shè)拋物線方程為,則,得,所以拋物線方程為,故選:D,6、C【解析】對函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡單題.7、B【解析】利用橢圓的定義求解.【詳解】如圖所示:,故選:B8、C【解析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.9、A【解析】計算雙曲線的焦點為,離心率,得到橢圓的焦點為,離心率,計算得到答案.【詳解】雙曲線的焦點為,離心率,故橢圓的焦點為,離心率,即.解得,故橢圓標(biāo)準(zhǔn)方程為:.故選:.【點睛】本題考查了橢圓和雙曲線的離心率,焦點,橢圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計算能力.10、C【解析】由題意,點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進(jìn)而可得,所以點P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因為過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.11、D【解析】由雙曲線的方程及雙曲線的離心率即可求解.【詳解】解:因為雙曲線,所以,所以雙曲線的離心率,故選:D.12、C【解析】由題得,化簡即得解.【詳解】因為,所以,所以,解得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分類討論,兩種情況,結(jié)合直線平行的知識得出實數(shù).【詳解】當(dāng)時,直線與直線垂直;當(dāng)時,,則且,解得.故答案為:14、【解析】由,求得圓心,再根據(jù)圓過原點,求得半徑即可.【詳解】由,可得,即圓心為,又圓過原點,所以圓的半徑,故圓的標(biāo)準(zhǔn)方程為故答案為:【點睛】本題主要考查圓的方程的求法,屬于基礎(chǔ)題.15、【解析】先由題得到,再整體代入化簡即得解.【詳解】因為,所以,則故答案為【點睛】本題主要考查差角的正切公式,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.16、【解析】根據(jù)圓的幾何性質(zhì),結(jié)合點到直線距離公式進(jìn)行求解即可.【詳解】圓C:的半徑為3,圓心坐標(biāo)為:設(shè)圓心到直線l:的距離為,要想圓C上恰有四個點到直線l的距離都等于1,只需,即,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)根據(jù)等比數(shù)列的定義,結(jié)合等差數(shù)列的基本量,即可容易求得數(shù)列,的通項公式;(2)根據(jù)(1)中所求,構(gòu)造數(shù)列,證明其為等比數(shù)列,利用等比數(shù)列的前項和即可求得結(jié)果.【小問1詳解】因為數(shù)列滿足,故可得數(shù)列為等比數(shù)列,且公比,則;數(shù)列為等差數(shù)列,,前4項和,設(shè)其公差為,故可得,解得,則;綜上所述,,.【小問2詳解】由(1)可知:,,故,又,又,則是首項1,公比為的等比數(shù)列;則.18、(1)在、上遞增,在上遞減;(2).【解析】【小問1詳解】由題設(shè),且定義域為,則,當(dāng)或時,;當(dāng)時,.所以在、上遞增,在上遞減.【小問2詳解】由題設(shè),在上恒成立,所以在上恒成立,當(dāng)時,滿足題設(shè);當(dāng)時,,可得.綜上,.19、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問1詳解】解:因為平面,四邊形為矩形,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè),則、、、、、,,,,,所以,,,所以,,,又因為,因此,平面.所以,平面的一個法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問2詳解】解:若,則、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.20、(1)證明見解析;(2).【解析】(1)過點作交的延長線于點,連接,由,,證出平面,即可證出.(2)以為原點,的方向分別為軸正方向,建立空間直角坐標(biāo)系,寫出相應(yīng)點的坐標(biāo),利用,即可得到答案.【小問1詳解】過點作交的延長線于點,連接,因為,所以,又因為,所以,所以,即,.因為,所以平面,因為平面,所以【小問2詳解】因為平面平面,平面平面,所以平面,以為原點,的方向分別為軸正方向,建立如圖所示的空間直角坐標(biāo)系,則,可得,因為,所以直線與所成角的余弦值為21、(1)為二面角的平面角,理由見解析(2)證明見解析(3)證明見解析【解析】(1)根據(jù),結(jié)合二面角定義得到答案.(2)證明平面得到,得到平面,得到證明.(3)延長,交于點,連接,證明即可.【小問1詳解】連接,則,,故為二面角的平面角.【小問2詳解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小問3詳解】延長,交于點,連接,易知,故故是的中點,是線段的中點,故,平面,且平面,故直線平面.22、(1)2(2)(3)證明見詳解【解析】(1)用兩點間的距離公式和三角形的面積公式,結(jié)合已知直接可解;(2)根據(jù)中點坐標(biāo)公式,結(jié)合(1)中結(jié)論可得;(3)要證,只需證和的中點重合,直接或利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度應(yīng)急救援車輛借用及調(diào)度合同模板3篇
- 2024年貨物搬運及運輸合同
- 2025年度新能源汽車充電站運營管理服務(wù)合同3篇
- 2024年電子設(shè)備購買擔(dān)保合同
- 17 屈原(節(jié)選)公開課一等獎創(chuàng)新教案
- 2024年飯店管理運營權(quán)承包合同書版B版
- 2025年大興安嶺林業(yè)集團(tuán)公司招聘筆試參考題庫含答案解析
- 2025年湖南邵陽縣自來水公司招聘筆試參考題庫含答案解析
- 2025年寧波舜瑞產(chǎn)業(yè)控股集團(tuán)招聘筆試參考題庫含答案解析
- 2025年浙江四方集團(tuán)有限公司招聘筆試參考題庫含答案解析
- IUE(胚胎電轉(zhuǎn))課件
- 大氣污染與人體健康課件
- 企業(yè)信息公示聯(lián)絡(luò)員備案申請表
- 學(xué)校體育學(xué)重點、知識點
- 人因失誤及防人因失誤工具課件
- (完整版)《安全標(biāo)志及其使用導(dǎo)則規(guī)范》
- 挑戰(zhàn)杯生命科學(xué)獲獎作品范例
- 微信如何進(jìn)行視頻聊天
- T∕CNFMA B003-2018 林火防撲機械 以汽油機為動力的便攜式化學(xué)泡沫滅火機
- 全貼合OCA工藝簡介
- 部編版八上語文古代詩歌鑒賞對比閱讀(含答案)
評論
0/150
提交評論