版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
天津市靜海區(qū)第四中學2024屆高二數(shù)學第一學期期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術(shù)》是我國古代的數(shù)學巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個人共出100錢,按照爵位從高到低每人所出錢數(shù)成等差數(shù)列,問這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.20C.18 D.162.直線與圓相交于點,點是坐標原點,若是正三角形,則實數(shù)的值為A.1 B.-1C. D.3.若曲線表示圓,則m的取值范圍是()A. B.C. D.4.定義域為的函數(shù)滿足,且的導函數(shù),則滿足的的集合為A. B.C. D.5.一個幾何體的三視圖都是半徑為1的圓,在該幾何體內(nèi)放置一個高度為1的長方體,則長方體的體積最大值為()A. B.C. D.16.若動點在方程所表示的曲線上,則以下結(jié)論正確的是()①曲線關(guān)于原點成中心對稱圖形;②動點到坐標原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④7.如圖,在空間四邊形中,()A. B.C. D.8.正三棱錐的側(cè)面都是直角三角形,,分別是,的中點,則與平面所成角的余弦值為()A. B.C. D.9.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定10.雙曲線與橢圓的焦點相同,則等于()A.1 B.C.1或 D.211.若函數(shù)在上有兩個極值點,則下列選項中不正確的為()A. B.C. D.12.在中,已知角A,B,C所對的邊為a,b,c,,,,則()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知,,若,則______14.已知存在正數(shù)使不等式成立,則的取值范圍_____15.當為任意實數(shù)時,直線恒過定點,則以點C為圓心,半徑為圓的標準方程______16.已知數(shù)列滿足,,則數(shù)列的前n項和______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是正項數(shù)列,,且.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項和為,若對恒成立,求實數(shù)的取值范圍.18.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點,且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積19.(12分)數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項和.20.(12分)我國是世界最大的棉花消費國、第二大棉花生產(chǎn)國,其中,新疆棉產(chǎn)量約占國內(nèi)產(chǎn)量的87%,消費量約占國內(nèi)消費量的67%.新疆棉的品質(zhì)高:纖維柔長,潔白光澤,彈性良好,各項質(zhì)量指標均超國家標準.尤其是被授予“中國彩棉之鄉(xiāng)”稱號的新疆建設兵團一四八團生產(chǎn)的天然彩棉,株型緊湊,吐絮集中,品質(zhì)優(yōu)良,色澤純正、艷麗,手感柔軟,適合中高檔紡織.新疆彩棉根據(jù)色澤、手感、纖維長度等評分指標打分,得分在區(qū)間內(nèi)分別對應四級、三級、二級、一級.某經(jīng)銷商從采購的新蚯彩棉中隨機抽取20包(每包1kg),得分數(shù)據(jù)如圖(1)試統(tǒng)計各等級數(shù)量,并估計各等級在該批彩棉中所占比例;(2)用樣本估計總體,經(jīng)銷商參考以下兩種銷售方案進行銷售:方案1:不分等級賣出,單價為1.79萬元/噸;方案2:分等級賣出,不同等級的新疆彩棉售價如下表所示:等級一級二級三級四級售價(萬元/噸)若從經(jīng)銷商老板的角度考慮,采用哪種方案較好?并說明理由21.(12分)已知函數(shù)(…是自然對數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點的個數(shù).22.(10分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,建立等差數(shù)列模型,結(jié)合等差數(shù)列公式求解即可.【詳解】解:根據(jù)題意,設每人所出錢數(shù)成等差數(shù)列,公差為,前項和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:D.2、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標,設圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C3、C【解析】按照圓的一般方程滿足的條件求解即可.【詳解】或.故選:C.4、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因為f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因為f(1)=1,所以g(1)=2f(1)-1-1=0.所以當x<1時,g(x)<0,即2f(x)<x+1.故選B.【點睛】本題主要考察導數(shù)的運算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題5、B【解析】根據(jù)題意得到幾何體為半徑為1的球,長方體的體對角線為球的直徑時,長方體體積最大,設出長方體的長和寬,得到等量關(guān)系,利用基本不等式求解體積最大值.【詳解】由題意得:此幾何體為半徑為1的球,長方體為球的內(nèi)接長方體時,體積最大,此時長方體的體對角線為球的直徑,設長方體長為,寬為,則由題意得:,解得:,而長方體體積為,當且僅當時等號成立,故選:B6、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結(jié)合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關(guān)于原點成中心對稱圖形,故①正確;對于②,設,則動點到坐標原點的距離,因為,所以,故②正確;對于③,設,動點與點的距離為,因為函數(shù)在上遞減,所以當時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當時,因為,所以,故④不正確.綜上所述:結(jié)論正確的是:①②.故選:A7、A【解析】利用空間向量加減法法則直接運算即可.【詳解】根據(jù)向量的加法、減法法則得.故選:A.8、C【解析】以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標系,利用向量法能求出PB與平面PEF所成角的正弦值.【詳解】∵正三棱錐的側(cè)面都是直角三角形,E,F(xiàn)分別是AB,BC的中點,∴以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標系,設,則,,,,,,,,設平面PEF的法向量,則,取,得,設PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.9、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.10、A【解析】根據(jù)雙曲線方程形式確定焦點位置,再根據(jù)半焦距關(guān)系列式求參數(shù).【詳解】因為雙曲線的焦點在軸上,所以橢圓焦點在軸上,依題意得解得.故選:A11、C【解析】求導,根據(jù)題意可得,從而可得出答案.【詳解】解:,因為函數(shù)在上有兩個極值點,所以,即.所以ABD正確,C錯誤.故選:C.12、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量垂直得到等量關(guān)系,求出答案.【詳解】由題意得:,解得:故答案為:14、(1,1)【解析】存在性問題轉(zhuǎn)化為最大值,運用均值不等式,求出的最大值,轉(zhuǎn)化成解對數(shù)不等式,進而解出【詳解】解:∵,由于,則,∴,當且僅當時,即:時,∴有最大值,又存在正數(shù)使不等式成立,則,即,∴,即的取值范圍為:.故答案為:【點睛】本題考查均值不等式的應用和對數(shù)不等式的解法,還涉及存在性問題,考查化簡計算能力15、【解析】先求得直線過的定點C,再寫出圓的標準方程.【詳解】直線可化為,則,解得,所以直線恒過定點,所以以點C為圓心,半徑為圓的標準方程是,故答案為:16、【解析】先求出,利用裂項相消法求和.【詳解】因為數(shù)列滿足,,所以數(shù)列為公差d=2的等差數(shù)列,所以,所以所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由條件因式分解可得,從而得到,即可得出答案.(2)由(1)可得,由錯位相減法求和得到,由題意即即對恒成立,分析數(shù)列的單調(diào)性,得出答案.【小問1詳解】由,得∵∴∴∴數(shù)列是公比為2的等比數(shù)列.∵,∴.【小問2詳解】由(1)知,∴∴①∴②①-②得∴∴由對恒成立得對恒成立即對恒成立,又是遞減數(shù)列∴時得到最大值∴,即∴的取值范圍是.18、(1)證明見解析;(2).【解析】(1)過M作MN∥CD交PD于點N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過M作MN∥CD交PD于點N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點M到平面PAD的距離等于點B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.19、(1)證明見解析;(2).【解析】(1)根據(jù)遞推公式,結(jié)合等差數(shù)列的定義、等比數(shù)列的定義進行證明即可;(2)運用裂項相消法進行求解即可.【小問1詳解】∵,∴,又∵,∴,∴數(shù)列是首項為0,公差為1的等差數(shù)列,∴,∴,從而,∴數(shù)列是首項為2,公比為2的等比數(shù)列;【小問2詳解】由(1)知,則,∴,∴.20、(1)答案見解析;(2)答案、理由見解析【解析】(1)根據(jù)莖葉圖計算出數(shù)量以及比例.(2)計算出方案的彩棉售價平均值,由此作出決策.【詳解】(1)得分在(0,25]內(nèi)的有19,21,共2個,所以四緩彩棉在該批彩棉中所占比例為;得分在(25,50]內(nèi)的有27,31,36,42,45,48,共6個,所以三級彩棉在該批彩棉中所占比例為;得分在(50,75]內(nèi)的有51,51,58,63,65,68,73,共7個,所以二級彩棉在該批彩棉中所占比例為;得分在(75,100]內(nèi)的有76,79,83,85,92,共5個,所以一級彩棉在該批彩棉中所占比例(2)解答一:選用方案2,理由如下:方案1:不分等級賣出,單價為1.79萬元/噸;設方案2的彩棉售價平均值為萬元/噸,則因為,所以從經(jīng)銷商老板角度考慮,采用方案2時銷售利潤比較大,應選方案2解答二:選用方案1,理由如下:方案1:不分等級賣出,單價為1.79萬元/噸;設方案2的彩棉售價平均值為則,因為,但(萬元)差別較小所以從經(jīng)銷商老板后期對彩棉分類的人力資源和時間成本角度考慮,采用方案1比較好21、(1)當時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時函數(shù)沒有零點;或時函數(shù)有且只有一個零點;時,函數(shù)有兩個零點.【解析】(1)先對函數(shù)求導,然后分和兩種情況判斷導函數(shù)正負,求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,從而可得答案【詳解】(1)因為,所以,當時,恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點,由,得.令,則.或時,,時,,所以在和上都是減函數(shù),在上是增函數(shù),時取極小值,又當時,.所以時,關(guān)于的方程無解,或時關(guān)于的方程只有一個解,時,關(guān)于的方程有兩個不同解.因此,時函數(shù)沒有零點,或時函數(shù)有且只有一個零點,時,函數(shù)有兩個零點.【點睛】關(guān)鍵點點睛:此題考查導數(shù)的應用,考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導數(shù)判斷函數(shù)的零點,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇州站施工組織設計方案(幕墻)
- 二零二五年度金融行業(yè)IT運維安全保障協(xié)議3篇
- 專業(yè)化海路物流合作合同(2024版)版B版
- 2025年度環(huán)保建筑材料推廣合作框架協(xié)議4篇
- 2025年度購物中心場地合作開發(fā)及商業(yè)運營合同4篇
- 二零二四圖書購置項目與圖書館無障礙閱讀服務合同3篇
- 2025年度智能攤位管理系統(tǒng)開發(fā)與實施合同4篇
- 2025年度劇本創(chuàng)作與版權(quán)授權(quán)管理合同3篇
- 二零二五版4S店汽車銷售合同樣本圖2篇
- 2025年度農(nóng)產(chǎn)品質(zhì)量安全追溯體系服務合同4篇
- 衡水市出租車駕駛員從業(yè)資格區(qū)域科目考試題庫(全真題庫)
- 護理安全用氧培訓課件
- 《三國演義》中人物性格探析研究性課題報告
- 注冊電氣工程師公共基礎高數(shù)輔導課件
- 土方勞務分包合同中鐵十一局
- 乳腺導管原位癌
- 冷庫管道應急預案
- 司法考試必背大全(涵蓋所有法律考點)
- 公共部分裝修工程 施工組織設計
- 《學習教育重要論述》考試復習題庫(共250余題)
- 裝飾裝修施工及擔保合同
評論
0/150
提交評論