四川省眉山市外國語學(xué)校2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
四川省眉山市外國語學(xué)校2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
四川省眉山市外國語學(xué)校2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
四川省眉山市外國語學(xué)校2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
四川省眉山市外國語學(xué)校2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省眉山市外國語學(xué)校2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的導(dǎo)函數(shù)為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點 B.在單調(diào)遞增C.一定有最小值 D.不等式一定有解2.已知集合,則()A. B.C. D.3.在長方體中,,,則與平面所成的角的正弦值為()A. B.C. D.4.不等式表示的平面區(qū)域是一個()A.三角形 B.直角三角形C.矩形 D.梯形5.已知直線經(jīng)過點,且是的方向向量,則點到的距離為()A. B.C. D.6.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.7.已知直線和互相平行,則實數(shù)的取值為()A或3 B.C. D.1或8.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3C. D.29.已知直線過點,,則該直線的傾斜角是()A. B.C. D.10.若向量則()A. B.3C. D.11.已知函數(shù)為偶函數(shù),則在處的切線方程為()A. B.C. D.12.已知三個觀測點,在的正北方向,相距,在的正東方向,相距.在某次爆炸點定位測試中,兩個觀測點同時聽到爆炸聲,觀測點晚聽到,已知聲速為,則爆炸點與觀測點的距離是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線C:y2=2px過點P(1,1):①點P到拋物線焦點的距離為②過點P作過拋物線焦點的直線交拋物線于點Q,則△OPQ的面積為③過點P與拋物線相切的直線方程為x-2y+1=0④過點P作兩條斜率互為相反數(shù)的直線交拋物線于M,N兩點,則直線MN的斜率為定值其中正確的是________.14.將全體正整數(shù)排成一個三角形數(shù)陣:按照以上排列的規(guī)律,第行從左向右的第2個數(shù)為____________.15.若直線是曲線的切線,也是曲線的切線,則__________16.如圖是用斜二測畫法畫出水平放置的正三角形ABC的直觀圖,其中,則三角形的面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點.(1)證明:PO⊥平面ABC;(2)若點M在棱BC上,且,求平面MAP與平面CAP所成角的大小.18.(12分)三棱錐中,,,,直線與平面所成的角為,點在線段上.(1)求證:;(2)若點在上,滿足,點滿足,求實數(shù)使得二面角的余弦值為.19.(12分)如圖長方體中,,,點為的中點.(1)求證:平面;(2)求證:平面;(3)求二面角的余弦值.20.(12分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實數(shù)、的值;(2)設(shè),若不等式,在上恒成立,求實數(shù)的取值范圍21.(12分)設(shè)函數(shù)(1)若在處取得極值,求a的值;(2)若在上單調(diào)遞減,求a的取值范圍22.(10分)在平面直角坐標系xOy中,已知橢圓的離心率為,且短軸長為2.(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點為B,右焦點為F,直線l與橢圓交于M,N兩點,問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)圖象可得的符號,從而可得的單調(diào)區(qū)間,再對選項進行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,可得在遞減,遞增;在遞減,在遞增,B錯誤,且知,所以存在極小值和,無極大值,A錯誤,同時無論是否存在,可得出一定有最小值,但是最小值不一定為負數(shù),故C正確,D錯誤.故選:C.2、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設(shè),,∴.故選:C.3、D【解析】過點作的垂線,垂足為,由線面垂直判定可知平面,則所求角即為,由長度關(guān)系求得即可.【詳解】在平面內(nèi)過點作的垂線,垂足為,連接.,,,平面,平面,的正弦值即為所求角的正弦值,,,.故選:D.4、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個梯形.故選:D.5、B【解析】求出,根據(jù)點到直線的距離的向量公式進行求解.【詳解】因為,為的一個方向向量,所以點到直線的距離.故選:B6、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.7、B【解析】利用兩直線平行的等價條件求得實數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結(jié)論,可避免討論:已知,,則,8、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.9、C【解析】根據(jù)直線的斜率公式即可求得答案.【詳解】設(shè)該直線的傾斜角為,該直線的斜率,即.故選:C10、D【解析】先求得,然后根據(jù)空間向量模的坐標運算求得【詳解】由于向量,,所以.故故選:D11、A【解析】根據(jù)函數(shù)是偶函數(shù)可得,可求出,求出函數(shù)在處的導(dǎo)數(shù)值即為切線斜率,即可求出切線方程.【詳解】函數(shù)為偶函數(shù),,即,解得,,則,,且,切線方程為,整理得.故選:A.【點睛】本題考查函數(shù)奇偶性的應(yīng)用,考查利用導(dǎo)數(shù)求切線方程,屬于基礎(chǔ)題.12、D【解析】根據(jù)題意作出示意圖,然后結(jié)合余弦定理解三角形即可求出結(jié)果.【詳解】設(shè)爆炸點為,由于兩個觀測點同時聽到爆炸聲,則點位于的垂直平分線上,又在的正東方向且觀測點晚聽到,則點位于的左側(cè),,,,設(shè),則,解得,則爆炸點與觀測點的距離為,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、②③④【解析】由拋物線過點可得拋物線的方程,求出焦點的坐標及準線方程,由拋物線的性質(zhì)可判斷①;求出直線的方程與拋物線聯(lián)立切線的坐標,進而求出三角形的面積,判斷②;設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立求得斜率,進而可得在處的切線方程,從而判斷③;設(shè)直線的方程為拋物線聯(lián)立求出的坐標,同理求出的坐標,進而求出直線的斜率,從而可判斷④【詳解】解:由拋物線過點,所以,所以,所以拋物線的方程為:;可得拋物線的焦點的坐標為:,,準線方程為:,對于①,由拋物線的性質(zhì)可得到焦點的距離為,故①錯誤;對于②,可得直線的斜率,所以直線的方程為:,代入拋物線的方程可得:,解得,所以,故②正確;對于③,依題意斜率存在,設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切線方程為x-2y+1=0,故③正確;對于④,設(shè)直線的方程為:,與拋物線聯(lián)立可得,所以,所以,代入直線中可得,即,,直線的方程為:,代入拋物線的方程,可得,代入直線的方程可得,所以,,所以為定值,故④正確故答案為:②③④.14、【解析】通過觀察、分析、歸納,找出規(guī)律運算求解即可【詳解】前行共有正整數(shù)個,即個,因此第行第個數(shù)是全體正整數(shù)中第個,即為故答案為:15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合待定系數(shù)法進行求解即可.【詳解】設(shè)曲線的切點為:,由,所以過該切點的切線斜率為:,于切線方程為:,因此有:,設(shè)曲線的切點為:,由,所以過該切點的切線斜率為:,于是切線方程為:,因此有:,因為,,即,因此,故答案為:【點睛】關(guān)鍵點睛:根據(jù)導(dǎo)數(shù)的幾何意義進行求解是解題的關(guān)鍵.16、【解析】根據(jù)直觀圖和平面圖的關(guān)系可求出,進而利用面積公式可得三角形的面積【詳解】由已知可得則故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標原點,分別為軸的空間直角坐標系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點,則是等邊三角形,,,在中,,滿足,即是直角三角形,則,又,平面,所以平面.【小問2詳解】建立以為坐標原點,分別為軸的空間直角坐標系如圖所示,則,,,,則平面的法向量為,由已知,得到點坐標,,設(shè)平面的法向量則,令,則,即,設(shè)平面MAP與平面CAP所成角為,則,則平面MAP與平面CAP所成角為.18、(1)證明見解析;(2).【解析】(1)證明平面,利用線面垂直的性質(zhì)可證得結(jié)論成立;(2)設(shè),以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可得出關(guān)于實數(shù)的等式,即可解得實數(shù)的值.【小問1詳解】證明:因為,,則且,,平面,所以為直線與平面所成的線面角,即,,故,,,平面,平面,因此,.【小問2詳解】解:設(shè),由(1)可知且,,因為平面,,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,由,取,則,由已知可得,解得.當(dāng)點為線段的中點時,二面角的平面角為銳角,合乎題意.綜上所述,.19、(1)見解析(2)見解析(3)【解析】(1)作輔助線,由中位線定理證明,再由線面平行的判定定理證明即可;(2)連接,由勾股定理證明,,再結(jié)合線面垂直的判定定理證明即可;(3)建立空間直角坐標系,利用向量法求面面角的余弦值即可.【詳解】(1)連接交與點,連接四邊形為正方形,點為的中點又點為的中點,平面,平面平面(2)連接由勾股定理可知,,則同理可證,平面平面(3)建立如下圖所示的空間直角坐標系顯然平面的法向量即為平面的法向量,不妨設(shè)為由(2)可知平面,即平面的法向量為又二面角是鈍角二面角的余弦值為【點睛】關(guān)鍵點睛:在第一問中,關(guān)鍵是利用中位線定理找到線線平行,再由定義證明線面平行;在第二問中,關(guān)鍵是利用勾股定理證明線線垂直,從而得出線面垂直;在第三問中,關(guān)鍵是建立坐標系,利用向量法求面面角的余弦值.20、(1),;(2).【解析】(1)分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合已知條件可得出關(guān)于實數(shù)、的方程組,即可解得實數(shù)、的值;(2)由(1)可得,利用參變量分離法可得出,利用單調(diào)性求出函數(shù)在上的最小值,即可得出實數(shù)的取值范圍.【小問1詳解】解:的對稱軸是,又,所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時,取最小值,當(dāng)時,取最大值,即,解得.【小問2詳解】解:由(1)知:,所以,,又,,令,則在上是增函數(shù).所以,,要使在上恒成立,只需,因此,實數(shù)的取值范圍為21、(1)(2)【解析】(1)對求導(dǎo),再根據(jù)題意有,據(jù)此列式求出;(2)由題可知對恒成立,即對恒成立,因此求出在區(qū)間上的最小值即可得出結(jié)論.【詳解】(1),則,因為在處取得極值,所以,解得,經(jīng)檢驗,當(dāng)時,在處取得極值;(2)因為在上單調(diào)遞減,所以對恒成立,則對恒成立,∵當(dāng)時,,∴,即a的取值范圍為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論