版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
八年級(jí)上冊(cè)壓軸題數(shù)學(xué)考試試卷及答案一、壓軸題1.請(qǐng)按照研究問題的步驟依次完成任務(wù).(問題背景)(1)如圖1的圖形我們把它稱為“8字形”,請(qǐng)說理證明∠A+∠B=∠C+∠D.(簡(jiǎn)單應(yīng)用)(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問題(1)中的結(jié)論)(問題探究)(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度數(shù)為;(拓展延伸)(4)在圖4中,若設(shè)∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為(用x、y表示∠P);(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關(guān)系,直接寫出結(jié)論.2.已知,在平面直角坐標(biāo)系中,,,C為AB的中點(diǎn),P是線段AB上一動(dòng)點(diǎn),D是線段OA上一點(diǎn),且,于E.(1)求的度數(shù);(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),PE的值是否變化?若變化,說明理由;若不變,請(qǐng)求PE的值.(3)若,求點(diǎn)D的坐標(biāo).3.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點(diǎn)G、H.(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點(diǎn)D,分別交BC、BM于點(diǎn)E、F.①求證:∠1=∠2;②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;(2)如圖3,點(diǎn)E為BC上一點(diǎn),AE交BM于點(diǎn)F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.4.(閱讀材科)小明同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的項(xiàng)角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來則形成一組全等的三角形,小明把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則△ABD≌△ACE.(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點(diǎn)O,連接AO,下列結(jié)論:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正確的有.(將所有正確的序號(hào)填在橫線上).(延伸應(yīng)用)(3)如圖3,AB=BC,∠ABC=∠BDC=60°,試探究∠A與∠C的數(shù)量關(guān)系.5.閱讀下面材料,完成(1)-(3)題.?dāng)?shù)學(xué)課上,老師出示了這樣一道題:如圖1,已知等腰△ABC中,AB=AC,AD為BC邊上的中線,以AB為邊向AB左側(cè)作等邊△ABE,直線CE與直線AD交于點(diǎn)F.請(qǐng)?zhí)骄烤€段EF、AF、DF之間的數(shù)量關(guān)系,并證明.同學(xué)們經(jīng)過思考后,交流了自已的想法:小明:“通過觀察和度量,發(fā)現(xiàn)∠DFC的度數(shù)可以求出來.”小強(qiáng):“通過觀察和度量,發(fā)現(xiàn)線段DF和CF之間存在某種數(shù)量關(guān)系.”小偉:“通過做輔助線構(gòu)造全等三角形,就可以將問題解決.”......老師:“若以AB為邊向AB右側(cè)作等邊△ABE,其它條件均不改變,請(qǐng)?jiān)趫D2中補(bǔ)全圖形,探究線段EF、AF、DF三者的數(shù)量關(guān)系,并證明你的結(jié)論.”(1)求∠DFC的度數(shù);(2)在圖1中探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明;(3)在圖2中補(bǔ)全圖形,探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明.6.如圖,若要判定紙帶兩條邊線a,b是否互相平行,我們可以采用將紙條沿AB折疊的方式來進(jìn)行探究.(1)如圖1,展開后,測(cè)得,則可判定a//b,請(qǐng)寫出判定的依據(jù)_________;(2)如圖2,若要使a//b,則與應(yīng)該滿足的關(guān)系是_________;(3)如圖3,紙帶兩條邊線a,b互相平行,折疊后的邊線b與a交于點(diǎn)C,若將紙帶沿(,分別在邊線a,b上)再次折疊,折疊后的邊線b與a交于點(diǎn),AB//,,求出的長(zhǎng).7.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若∠B=30°,則∠ACD的度數(shù)是度;拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內(nèi)部,點(diǎn)A、B分別在CM、CN上,分別過點(diǎn)A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);應(yīng)用:如圖③,點(diǎn)A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內(nèi)部,點(diǎn)D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.8.如圖,在等邊中,線段為邊上的中線.動(dòng)點(diǎn)在直線上時(shí),以為一邊在的下方作等邊,連結(jié).(1)求的度數(shù);(2)若點(diǎn)在線段上時(shí),求證:;(3)當(dāng)動(dòng)點(diǎn)在直線上時(shí),設(shè)直線與直線的交點(diǎn)為,試判斷是否為定值?并說明理由.9.直角三角形中,,直線過點(diǎn).(1)當(dāng)時(shí),如圖1,分別過點(diǎn)和作直線于點(diǎn),直線于點(diǎn),與是否全等,并說明理由;(2)當(dāng),時(shí),如圖2,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接,點(diǎn)是上一點(diǎn),點(diǎn)是上一點(diǎn),分別過點(diǎn)作直線于點(diǎn),直線于點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為,點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為,點(diǎn)同時(shí)開始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)為等腰直角三角形時(shí),求的值.10.(1)問題發(fā)現(xiàn).如圖1,和均為等邊三角形,點(diǎn)、、均在同一直線上,連接.①求證:.②求的度數(shù).③線段、之間的數(shù)量關(guān)系為__________.(2)拓展探究.如圖2,和均為等腰直角三角形,,點(diǎn)、、在同一直線上,為中邊上的高,連接.①請(qǐng)判斷的度數(shù)為____________.②線段、、之間的數(shù)量關(guān)系為________.(直接寫出結(jié)論,不需證明)11.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C,OA所在直線為軸和軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足.(1)a=;b=;直角三角形AOC的面積為.(2)已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P,Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)O勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A勻速移動(dòng),點(diǎn)P到達(dá)O點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.AC的中點(diǎn)D的坐標(biāo)是(4,3),設(shè)運(yùn)動(dòng)時(shí)間為t秒.問:是否存在這樣的t,使得△ODP與△ODQ的面積相等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.(3)在(2)的條件下,若∠DOC=∠DCO,點(diǎn)G是第二象限中一點(diǎn),并且y軸平分∠GOD.點(diǎn)E是線段OA上一動(dòng)點(diǎn),連接接CE交OD于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過程中,探究∠GOD,∠OHC,∠ACE之間的數(shù)量關(guān)系,并證明你的結(jié)論(三角形的內(nèi)角和為180).12.已知ABC,P是平面內(nèi)任意一點(diǎn)(A、B、C、P中任意三點(diǎn)都不在同一直線上).連接PB、PC,設(shè)∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y(tǒng)°.(1)如圖,當(dāng)點(diǎn)P在ABC內(nèi)時(shí),①若y=70,s=10,t=20,則x=;②探究s、t、x、y之間的數(shù)量關(guān)系,并證明你得到的結(jié)論.(2)當(dāng)點(diǎn)P在ABC外時(shí),直接寫出s、t、x、y之間所有可能的數(shù)量關(guān)系,并畫出相應(yīng)的圖形.13.如圖1.在△ABC中,∠ACB=90°,AC=BC=10,直線DE經(jīng)過點(diǎn)C,過點(diǎn)A,B分別作AD⊥DE,BE⊥DE,垂足分別為點(diǎn)D和E,AD=8,BE=6.(1)①求證:△ADC≌△CEB;②求DE的長(zhǎng);(2)如圖2,點(diǎn)M以3個(gè)單位長(zhǎng)度/秒的速度從點(diǎn)C出發(fā)沿著邊CA運(yùn)動(dòng),到終點(diǎn)A,點(diǎn)N以8個(gè)單位長(zhǎng)度/秒的速度從點(diǎn)B出發(fā)沿著線BC—CA運(yùn)動(dòng),到終點(diǎn)A.M,N兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒(t>0),當(dāng)點(diǎn)N到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),過點(diǎn)M作PM⊥DE于點(diǎn)P,過點(diǎn)N作QN⊥DE于點(diǎn)Q;①當(dāng)點(diǎn)N在線段CA上時(shí),用含有t的代數(shù)式表示線段CN的長(zhǎng)度;②當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)N重合;③當(dāng)△PCM與△QCN全等時(shí),則t=.14.探索發(fā)現(xiàn):……根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問題:(1)=,=;(2)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:(3)利用規(guī)律解方程:15.如圖,在中,,,點(diǎn)為內(nèi)一點(diǎn),且.(1)求證:;(2)若,為延長(zhǎng)線上的一點(diǎn),且.①求的度數(shù).②若點(diǎn)在上,且,請(qǐng)判斷、的數(shù)量關(guān)系,并說明理由.③若點(diǎn)為直線上一點(diǎn),且為等腰,直接寫出的度數(shù).16.在我們認(rèn)識(shí)的多邊形中,有很多軸對(duì)稱圖形.有些多邊形,邊數(shù)不同對(duì)稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對(duì)稱軸.回答下列問題:(1)非等邊的等腰三角形有________條對(duì)稱軸,非正方形的長(zhǎng)方形有________條對(duì)稱軸,等邊三角形有___________條對(duì)稱軸;(2)觀察下列一組凸多邊形(實(shí)線畫出),它們的共同點(diǎn)是只有1條對(duì)稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請(qǐng)你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對(duì)稱軸的凸五邊形,并用實(shí)線畫出所得的凸五邊形;(3)小明希望構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形,于是他選擇修改長(zhǎng)方形,圖2中是他沒有完成的圖形,請(qǐng)用實(shí)線幫他補(bǔ)完整個(gè)圖形;(4)請(qǐng)你畫一個(gè)恰好有3條對(duì)稱軸的凸六邊形,并用虛線標(biāo)出對(duì)稱軸.17.如圖,在中,,,點(diǎn)D在邊BC上運(yùn)動(dòng)(點(diǎn)D不與點(diǎn)重合),連接AD,作,DE交邊AC于點(diǎn)E.(1)當(dāng)時(shí),,(2)當(dāng)DC等于多少時(shí),,請(qǐng)說明理由;(3)在點(diǎn)D的運(yùn)動(dòng)過程中,的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出的度數(shù);若不可以,請(qǐng)說明理由.18.(閱讀材料):(1)在中,若,由“三角形內(nèi)角和為180°”得.(2)在中,若,由“三角形內(nèi)角和為180°”得.(解決問題):如圖①,在平面直角坐標(biāo)系中,點(diǎn)C是x軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn).已知軸,交y軸于點(diǎn)E,連接CE,CF是∠ECO的角平分線,交AB于點(diǎn)F,交y軸于點(diǎn)D.過E點(diǎn)作EM平分∠CEB,交CF于點(diǎn)M.(1)試判斷EM與CF的位置關(guān)系,并說明理由;(2)如圖②,過E點(diǎn)作PE⊥CE,交CF于點(diǎn)P.求證:∠EPC=∠EDP;(3)在(2)的基礎(chǔ)上,作EN平分∠AEP,交OC于點(diǎn)N,如圖③.請(qǐng)問隨著C點(diǎn)的運(yùn)動(dòng),∠NEM的度數(shù)是否發(fā)生變化?若不變,求出其值:若變化,請(qǐng)說明理由.19.(1)如圖1,和都是等邊三角形,且,,三點(diǎn)在一條直線上,連接,相交于點(diǎn),求證:.(2)如圖2,在中,若,分別以,和為邊在外部作等邊,等邊,等邊,連接、、恰交于點(diǎn).①求證:;②如圖2,在(2)的條件下,試猜想,,與存在怎樣的數(shù)量關(guān)系,并說明理由.20.已知:中,過B點(diǎn)作BE⊥AD,.(1)如圖1,點(diǎn)在的延長(zhǎng)線上,連,作于,交于點(diǎn).求證:;(2)如圖2,點(diǎn)在線段上,連,過作,且,連交于,連,問與有何數(shù)量關(guān)系,并加以證明;(3)如圖3,點(diǎn)在CB延長(zhǎng)線上,且,連接、的延長(zhǎng)線交于點(diǎn),若,請(qǐng)直接寫出的值.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、壓軸題1.(1)見解析;(2)∠P=23o;(3)∠P=26o;(4)∠P=;(5)∠P=.【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理即可證明;(2)如圖2,根據(jù)角平分線的性質(zhì)得到∠1=∠2,∠3=∠4,列方程組即可得到結(jié)論;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解決問題;(4)根據(jù)題意得出∠B+∠CAB=∠C+∠BDC,再結(jié)合∠CAP=∠CAB,∠CDP=∠CDB,得到y(tǒng)+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),從而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根據(jù)題意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再結(jié)合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【詳解】解:(1)證明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如圖2,∵AP、CP分別平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的結(jié)論得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如圖3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案為:26°;(4)由題意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案為:∠P=;(5)由題意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案為:∠P=.【點(diǎn)睛】本題考查三角形內(nèi)角和,三角形的外角的性質(zhì)、多邊形的內(nèi)角和等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用方程組的思想思考問題,屬于中考??碱}型.2.(1)45°;(2)PE的值不變,PE=4,理由見詳解;(3)D(,0).【解析】【分析】(1)根據(jù),,得△AOB為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì),即可求出∠OAB的度數(shù);(2)根據(jù)等腰直角三角形的性質(zhì)得到∠AOC=∠BOC=45°,OC⊥AB,再證明△POC≌△DPE,根據(jù)全等三角形的性質(zhì)得到OC=PE,即可得到答案;(3)證明△POB≌△DPA,得到PA=OB=,DA=PB,進(jìn)而得OD的值,即可求出點(diǎn)D的坐標(biāo).【詳解】(1),,∴OA=OB=,∵∠AOB=90°,∴△AOB為等腰直角三角形,∴∠OAB=45°;(2)PE的值不變,理由如下:∵△AOB為等腰直角三角形,C為AB的中點(diǎn),∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是線段OA上一點(diǎn),∴點(diǎn)P在線段BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC?△DPE(AAS),∴OC=PE,∵OC=AB=××=4,∴PE=4;(3)∵OP=PD,∴∠POD=∠PDO=(180°?45°)÷2=67.5°,∴∠APD=∠PDO?∠A=22.5°,∠BOP=90°?∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,∴△POB≌△DPA(AAS),∴PA=OB=,DA=PB,∴DA=PB=×-=8-,∴OD=OA?DA=-(8-)=,∴點(diǎn)D的坐標(biāo)為(,0).【點(diǎn)睛】本題主要考查等腰直角三角形的性質(zhì),三角形全等的判定與性質(zhì)定理,圖形與坐標(biāo),掌握等腰直角三角形的性質(zhì),是解題的關(guān)鍵.3.(1)①見解析;②見解析;(2)2【解析】【分析】(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;【詳解】(1)①證明:如圖1中,∵AB=AC,∠ABC=60°∴△ABC是等邊三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②證明:如圖2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,連接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)等知識(shí),解題的關(guān)鍵是能夠正確添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?jí)狠S題.4.(1)證明見解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性質(zhì)得出∠BAD=∠CAE,即可得出結(jié)論;(2)同(1)的方法判斷出△ABD≌△ACE,得出BD=CE,再利用對(duì)頂角和三角形的內(nèi)角和定理判斷出∠BOC=60°,再判斷出△BCF≌△ACO,得出∠AOC=120°,進(jìn)而得出∠AOE=60°,再判斷出BF<CF,進(jìn)而判斷出∠OBC>30°,即可得出結(jié)論;(3)先判斷出△BDP是等邊三角形,得出BD=BP,∠DBP=60°,進(jìn)而判斷出△ABD≌△CBP(SAS),即可得出結(jié)論.【詳解】(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如圖2,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正確,∠ADB=∠AEC,記AD與CE的交點(diǎn)為G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正確,在OB上取一點(diǎn)F,使OF=OC,∴△OCF是等邊三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正確,連接AF,要使OC=OE,則有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而沒辦法判斷∠OBC大于30度,所以,④不一定正確,即:正確的有①②③,故答案為①②③;(3)如圖3,延長(zhǎng)DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等邊三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【點(diǎn)睛】此題考查三角形綜合題,等腰三角形的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),構(gòu)造等邊三角形是解題的關(guān)鍵.5.(1)60°;(2)EF=AF+FC,證明見解析;(3)AF=EF+2DF,證明見解析.【解析】【分析】(1)可設(shè)∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根據(jù)三角形內(nèi)角和可得2α+60+2β=180°,從而有α+β=60°,即可得出∠DFC的度數(shù);(2)在EC上截取EG=CF,連接AG,證明△AEG≌△ACF,然后再證明△AFG為等邊三角形,從而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,連接BG,BF,證明方法類似(2),先證明△ABG≌△EBF,再證明△BFG為等邊三角形,最后可得出結(jié)論.【詳解】解:(1)∵AB=AC,AD為BC邊上的中線,∴可設(shè)∠BAD=∠CAD=α,又△ABE為等邊三角形,∴AE=AB=AC,∠EAB=60°,∴可設(shè)∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,證明如下:∵AB=AC,AD為BC邊上的中線,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,則∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,連接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG為等邊三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)補(bǔ)全圖形如圖所示,結(jié)論:AF=EF+2DF.證明如下:同(1)可設(shè)∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE為等邊三角形,∴∠ABE=∠AFC=60°,∴由8字圖可得:∠BAD=∠BEF,在AF上截取AG=EF,連接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG為等邊三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解決問題的關(guān)鍵是常用輔助線構(gòu)造全等三角形,屬于中考??碱}型.6.(1)內(nèi)錯(cuò)角相等,兩直線平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根據(jù)平行線的判定定理,即可得到答案;(2)由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,結(jié)合三角形內(nèi)角和定理,即可得到答案;(3)分兩種情況:①當(dāng)B1在B的左側(cè)時(shí),如圖2,當(dāng)B1在B的右側(cè)時(shí),如圖3,分別求出的長(zhǎng),即可得到答案.【詳解】(1)∵,∴a∥b(內(nèi)錯(cuò)角相等,兩直線平行),故答案是:內(nèi)錯(cuò)角相等,兩直線平行;(2)如圖1,由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a∥b,則與應(yīng)該滿足的關(guān)系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①當(dāng)B1在B的左側(cè)時(shí),如圖2,∵AB//,a∥b,∴AA1=BB1=3,∴=AC-AA1=7-3=4;②當(dāng)B1在B的右側(cè)時(shí),如圖3,∵AB//,a∥b,∴AA1=BB1=3,∴=AC+AA1=7+3=10.綜上所述:=4或10.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì)定理,折疊的性質(zhì)以及三角形的內(nèi)角和定理,掌握“平行線間的平行線段長(zhǎng)度相等”是解題的關(guān)鍵.7.探究:30;(2)拓展:20°;(3)應(yīng)用:120【解析】【分析】(1)利用直角三角形的性質(zhì)依次求出∠A,∠ACD即可;(2)利用直角三角形的性質(zhì)直接計(jì)算得出即可;(3)利用三角形的外角的性質(zhì)得出結(jié)論,直接轉(zhuǎn)化即可得出結(jié)論.【詳解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案為:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案為120.【點(diǎn)睛】此題是三角形的綜合題,主要考查了直角三角形的性質(zhì),三角形的外角的性質(zhì),垂直的定義,解本題的關(guān)鍵是充分利用直角三角形的性質(zhì):兩銳角互余,是一道比較簡(jiǎn)單的綜合題.8.(1)30°;(2)證明見解析;(3)是定值,.【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)可以直接得出結(jié)論;(2)根據(jù)等邊三角形的性質(zhì)就可以得出,,,,由等式的性質(zhì)就可以,根據(jù)就可以得出;(3)分情況討論:當(dāng)點(diǎn)在線段上時(shí),如圖1,由(2)可知,就可以求出結(jié)論;當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖2,可以得出而有而得出結(jié)論;當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖3,通過得出同樣可以得出結(jié)論.【詳解】(1)是等邊三角形,.線段為邊上的中線,,.(2)與都是等邊三角形,,,,,.在和中,;(3)是定值,,理由如下:①當(dāng)點(diǎn)在線段上時(shí),如圖1,由(2)可知,則,又,,是等邊三角形,線段為邊上的中線平分,即.②當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖2,與都是等邊三角形,,,,,,在和中,,,同理可得:,.③當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),與都是等邊三角形,,,,,,在和中,,,同理可得:,∵,.綜上,當(dāng)動(dòng)點(diǎn)在直線上時(shí),是定值,.【點(diǎn)睛】此題考查等邊三角形的性質(zhì),全等三角形的判定及性質(zhì),等邊三角形三線合一的性質(zhì),解題中注意分類討論的思想解題.9.(1)全等,理由見解析;(2)t=3.5秒或5秒【解析】【分析】(1)根據(jù)垂直的定義得到∠DAC=∠ECB,利用AAS定理證明△ACD≌△CBE;(2)分點(diǎn)F沿C→B路徑運(yùn)動(dòng)和點(diǎn)F沿B→C路徑運(yùn)動(dòng)兩種情況,根據(jù)等腰三角形的定義列出算式,計(jì)算即可;【詳解】解:(1)△ACD與△CBE全等.理由如下:∵AD⊥直線l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)由題意得,AM=t,F(xiàn)N=3t,則CM=8-t,由折疊的性質(zhì)可知,CF=CB=6,∴CN=6-3t,點(diǎn)N在BC上時(shí),△CMN為等腰直角三角形,當(dāng)點(diǎn)N沿C→B路徑運(yùn)動(dòng)時(shí),由題意得,8-t=3t-6,解得,t=3.5,當(dāng)點(diǎn)N沿B→C路徑運(yùn)動(dòng)時(shí),由題意得,8-t=18-3t,解得,t=5,綜上所述,當(dāng)t=3.5秒或5秒時(shí),△CMN為等腰直角三角形;【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理,靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.10.(1)①詳見解析;②60°;③;(2)①90°;②【解析】【分析】(1)易證∠ACD=∠BCE,即可求證△ACD≌△BCE,根據(jù)全等三角形對(duì)應(yīng)邊相等可求得AD=BE,根據(jù)全等三角形對(duì)應(yīng)角相等即可求得∠AEB的大??;(2)易證△ACD≌△BCE,可得∠ADC=∠BEC,進(jìn)而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解題.【詳解】解:(1)①證明:∵和均為等邊三角形,∴,,又∵,∴,∴.②∵為等邊三角形,∴.∵點(diǎn)、、在同一直線上,∴,又∵,∴,∴.③,∴.故填:;(2)①∵和均為等腰直角三角形,∴,,又∵,∴,∴,在和中,,∴,∴.∵點(diǎn)、、在同一直線上,∴,∴.②∵,∴.∵,,∴.又∵,∴,∴.故填:①90°;②.【點(diǎn)睛】本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等的性質(zhì),本題中求證△ACD≌△BCE是解題的關(guān)鍵.11.(1)6;8;24;(2)存在時(shí),使得△ODP與△ODQ的面積相等;(3)∠GOD+∠ACE=∠OHC,見解析【解析】【分析】(1)利用非負(fù)性即可求出a,b即可得出結(jié)論,即可求出△ABC的面積;(2)先表示出OQ,OP,利用那個(gè)面積相等,建立方程求解即可得出結(jié)論;(3)先判斷出∠OAC=∠AOD,進(jìn)而判斷出OG∥AC,即可判斷出∠FHC=∠ACE,同理∠FHO=∠GOD,即可得出結(jié)論.【詳解】解:(1)解:(1)∵,∴a-6=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);∴S△ABC=6×8÷2=24,故答案為(0,6),(8,0);6;8;24(2)∵由時(shí),∴存在時(shí),使得△ODP與△ODQ的面積相等(3))∴2∠GOA+∠ACE=∠OHC,理由如下:∵x軸⊥y軸,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y軸平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG∥AC,如圖,過點(diǎn)H作HF∥OG交x軸于F,∴HF∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD,∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.∴∠GOD+∠ACE=∠OHC.【點(diǎn)睛】此題是三角形綜合題,主要考查了非負(fù)性的性質(zhì),三角形的面積公式,角平分線的定義,平行線的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.12.(1)①100;②x=y+s+t;(2)見詳解.【解析】【分析】(1)①利用三角形的內(nèi)角和定理即可解決問題;②結(jié)論:x=y+s+t.利用三角形內(nèi)角和定理即可證明;(2)分6種情形分別求解即可解決問題.【詳解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案為:100.②結(jié)論:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之間所有可能的數(shù)量關(guān)系:如圖1:s+x=t+y;如圖2:s+y=t+x;如圖3:y=x+s+t;如圖4:x+y+s+t=360°;如圖5:t=s+x+y;如圖6:s=t+x+y;【點(diǎn)睛】本題考查三角形的內(nèi)角和定理,三角形的外角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題.13.(1)①證明見解析;②DE=14;(2)①8t-10;②t=2;③t=【解析】【分析】(1)①先證明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性質(zhì)得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①當(dāng)點(diǎn)N在線段CA上時(shí),根據(jù)CN=CN?BC即可得出答案;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得t=2即可;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,則CM=CN,得3t=10?8t,解得t=1011;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,則3t=8t?10,解得t=2;即可得出答案.【詳解】(1)①證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①當(dāng)點(diǎn)N在線段CA上時(shí),如圖3所示:CN=CN?BC=8t?10;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得:t=2,∴當(dāng)t為2秒時(shí),點(diǎn)M與點(diǎn)N重合;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,∴CM=CN,∴3t=10?8t,解得:t=;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,點(diǎn)M與N重合,CM=CN,則3t=8t?10,解得:t=2;綜上所述,當(dāng)△PCM與△QCN全等時(shí),則t等于s或2s,故答案為:s或2s.【點(diǎn)睛】本題是三角形綜合題目,考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、直角三角形的性質(zhì)、分類討論等知識(shí);本題綜合性強(qiáng),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.14.(1);(2);(3)見解析.【解析】【分析】(1)根據(jù)簡(jiǎn)單的分式可得,相鄰兩個(gè)數(shù)的積的倒數(shù)等于它們的倒數(shù)之差,即可得到和(2)根據(jù)(1)規(guī)律將乘法寫成減法的形式,可以觀察出前一項(xiàng)的減數(shù)等于后一項(xiàng)的被減數(shù),因此可得它們的和.(3)首先利用(2)的和的結(jié)果將左邊化簡(jiǎn),再利用分式方程的解法求解即可.【詳解】解:(1),;故答案為(2)原式=;(3)已知等式整理得:所以,原方程即:,方程的兩邊同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,檢驗(yàn):把x=3代入x(x+5)=24≠0,∴原方程的解為:x=3.【點(diǎn)睛】本題主要考查學(xué)生的歸納總結(jié)能力,關(guān)鍵在于根據(jù)簡(jiǎn)單的數(shù)的運(yùn)算尋找規(guī)律,是考試的熱點(diǎn).15.(1)證明見解析;(2)①;②,理由見解析;③7.5°或15°或82.5°或150°【解析】【分析】(1)利用線段的垂直平分線的性質(zhì)即可證明;(2)①利用SSS證得△ADC≌△BDC,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解題;②連接MC,易證△MCD為等邊三角形,即可證明△BDC≌△EMC即可解題;③分EN=EC、EN=CN、CE=CN三種情形討論,畫出圖形,利用等腰三角形的性質(zhì)即可求解.【詳解】(1)∵CB=CA,DB=DA,∴CD垂直平分線段AB,∴CD⊥AB;(2)①在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ACD=∠BCD=∠BCA=45°,∠CAD=∠CBD=15°,∴∠BDC=180-45°-15°=120°;②結(jié)論:ME=BD,理由:連接MC,∵,,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM,∠CDE=60°,∴△MCD為等邊三角形,∴CM=CD,∵EC=CA=CB,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC和△EMC中,,∴△BDC≌△EMC(AAS),∴ME=BD;③當(dāng)EN=EC時(shí),∠=7.5°或∠==82.5°;當(dāng)EN=CN時(shí),∠==150°;當(dāng)CE=CN時(shí),點(diǎn)N與點(diǎn)A重合,∠CNE=15°,所以∠CNE的度數(shù)為7.5°或15°或82.5°或150°.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的性質(zhì)和判定等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考?jí)狠S題.16.(1)1,2,3;(2)答案見解析;(3)答案見解析;(4)答案見解析.【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)、矩形的性質(zhì)以及等邊三角形的性質(zhì)進(jìn)行判斷即可;(2)中圖1-2和圖1-3都可以看作由圖1-1修改得到的,在圖1-4和圖1-5中,分別仿照類似的修改方式進(jìn)行畫圖即可;(3)長(zhǎng)方形具有兩條對(duì)稱軸,在長(zhǎng)方形的右側(cè)補(bǔ)出與左側(cè)一樣的圖形,即可構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形;(4)在等邊三角形的基礎(chǔ)上加以修改,即可得到恰好有3條對(duì)稱軸的凸六邊形.【詳解】解:(1)非等邊的等腰三角形有1條對(duì)稱軸,非正方形的長(zhǎng)方形有2條對(duì)稱軸,等邊三角形有3條對(duì)稱軸,故答案為1,2,3;(2)恰好有1條對(duì)稱軸的凸五邊形如圖中所示.(3)恰好有2條對(duì)稱軸的凸六邊形如圖所示.(4)恰好有3條對(duì)稱軸的凸六邊形如圖所示.17.(1)30,100;(2),見解析;(3)可以,或【解析】【分析】(1)根據(jù)平角的定義,可求出∠EDC的度數(shù),根據(jù)三角形內(nèi)和定理,即可求出∠DEC;(2)當(dāng)AB=DC時(shí),利用AAS可證明ΔABD?ΔDCE,即可得出AB=DC=3;(3)假設(shè)ΔADE是等腰三角形,分為三種情況討論:①當(dāng)DA=DE時(shí),求出∠DAE=∠DEA=70°,求出∠BAC,根據(jù)三角形的內(nèi)角和定理求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠BDA即可;②當(dāng)AD=AE時(shí),∠ADE=∠AED=40°,根據(jù)∠AED>∠C,得出此時(shí)不符合;③當(dāng)EA=ED時(shí),求出∠DAC,求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠ADB.【詳解】(1)在△BAD中,∵∠B=50°,∠BDA=100°,∴,.故答案為,.(2)當(dāng)時(shí),,理由如下:∵,∴∵,∴∵∴在和中∴(3)可以,理由如下:∵,∴分三種情況討論:①當(dāng)時(shí),∵,∴∴∵∴②當(dāng)時(shí),∵∴又∵∴∴點(diǎn)D與點(diǎn)B重合,不合題意.③當(dāng)時(shí),∴∵∴綜上所述,當(dāng)?shù)亩葦?shù)為或時(shí),是等腰三角形.【點(diǎn)睛】本題考查的是等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理、靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.18.(1)EM⊥CF,理由見解析;(2)證明見解析;(3)不變,且∠NEM=45°,理由見解析.【解析】【分析】(1)EM⊥CF,分別利用角平分線的性質(zhì)、平行線的性質(zhì)、三角形的內(nèi)角和定理進(jìn)行求證即可;(2)根據(jù)垂直定義和三角形的內(nèi)角和定理證得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和對(duì)頂角相等即可證得結(jié)論;(3)不變,且∠NEM=45°,先利用平行線的性質(zhì)得到∠AEC=∠ECO=2∠ECP,進(jìn)而有∠AEP=∠CEP+∠AEC=90°+2∠ECP,再由角平分線的定義∠NEP=∠AEN=45°+∠ECP,再根據(jù)同角的余角相等得到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 汕頭職業(yè)技術(shù)學(xué)院《外科護(hù)理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西中醫(yī)藥大學(xué)《計(jì)算方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西郵電職業(yè)技術(shù)學(xué)院《投資基金學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024至2030年殺菌滅藻水處理器項(xiàng)目投資價(jià)值分析報(bào)告
- 2024至2030年排水帽項(xiàng)目投資價(jià)值分析報(bào)告
- 2024至2030年單節(jié)文件柜項(xiàng)目投資價(jià)值分析報(bào)告
- 投標(biāo)協(xié)議合同范例
- 窗簾店欠款合同范例
- 2024年鋁合金三元變質(zhì)劑項(xiàng)目可行性研究報(bào)告
- 轉(zhuǎn)讓造紙?jiān)O(shè)備合同范例
- 2024年徐州地鐵集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 《機(jī)電一體化設(shè)備安裝與調(diào)試》課程標(biāo)準(zhǔn)
- 切割機(jī)安全培訓(xùn)
- 拉運(yùn)污水泄漏應(yīng)急預(yù)案
- 幼兒園大班社會(huì)《年的故事》
- 馬術(shù)比賽應(yīng)急處置預(yù)案
- 基于核心素養(yǎng)的初中道德與法治大單元與議題式教學(xué)融合策略 論文
- 土壤檢測(cè)報(bào)告
- 物業(yè)服務(wù)星級(jí)創(chuàng)建活動(dòng)實(shí)施方案
- 食材配送服務(wù)方案投標(biāo)方案(技術(shù)標(biāo))
- 共同撫養(yǎng)兩個(gè)子女協(xié)議書范本
評(píng)論
0/150
提交評(píng)論