上海市第八中學2024屆數(shù)學高二上期末教學質(zhì)量檢測模擬試題含解析_第1頁
上海市第八中學2024屆數(shù)學高二上期末教學質(zhì)量檢測模擬試題含解析_第2頁
上海市第八中學2024屆數(shù)學高二上期末教學質(zhì)量檢測模擬試題含解析_第3頁
上海市第八中學2024屆數(shù)學高二上期末教學質(zhì)量檢測模擬試題含解析_第4頁
上海市第八中學2024屆數(shù)學高二上期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

上海市第八中學2024屆數(shù)學高二上期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對于兩個平面、,“內(nèi)有無數(shù)多個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知函數(shù)的圖象在點處的切線與直線平行,若數(shù)列的前項和為,則的值為()A. B.C. D.3.若函數(shù)的圖象如圖所示,則函數(shù)的導函數(shù)的圖象可能是()A. B.C D.4.在一次拋硬幣的試驗中,某同學用一枚質(zhì)地均勻的硬幣做了100次試驗,發(fā)現(xiàn)正面朝上出現(xiàn)了48次,那么出現(xiàn)正面朝上的頻率和概率分別為()A.0.48,0.48 B.0.5,0.5C.0.48,0.5 D.0.5,0.485.已知為坐標原點,點的坐標為,點的坐標滿足,則的最小值為()A B.C. D.46.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.7.,則與分別為()A.與 B.與C.與0 D.0與8.如果橢圓的弦被點平分,那么這條弦所在的直線的方程是()A. B.C. D.9.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.10.已知函數(shù),則()A.3 B.C. D.11.雙曲線:的實軸長為()A. B.C.4 D.212.已知橢圓方程為:,則其離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,若圓的過點的三條弦的長,,構(gòu)成等差數(shù)列,則該數(shù)列的公差的最大值是______.14.過點與直線平行的直線的方程是________.15.在圓M:中,過點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.16.在數(shù)列中,,,則數(shù)列中最大項的數(shù)值為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求函數(shù)在區(qū)間上的最大值和最小值18.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)若在上存在極值點,證明:.19.(12分)已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2的周長為6,離心率等于.(1)求橢圓C的標準方程;(2)過點(4,0)的直線l交橢圓C于M、N兩點,且OM⊥ON,求直線l的方程.20.(12分)2021年11月初某市出現(xiàn)新冠病毒感染者,該市教育局部署了“停課不停學”的行動,老師們立即開展了線上教學.某中學為了解教學效果,于11月30日復課第一天安排了測試,數(shù)學教師為了調(diào)查高二年級學生這次測試的數(shù)學成績與每天在線學習數(shù)學的時長之間的相關關系,對在校高二學生隨機抽取45名進行調(diào)查,了解到其中有25人每天在線學習數(shù)學的時長不超過1小時,并得到如下的統(tǒng)計圖:(1)根據(jù)統(tǒng)計圖填寫下面列聯(lián)表,是否有95%的把握認為“高二學生的這次摸底考試數(shù)學成績與其每天在線學習數(shù)學的時長有關”;數(shù)學成績不超過120分數(shù)學成績超過120分總計每天在線學習數(shù)學的時長不超過1小時25每天在線學習數(shù)學的時長超過1小時總計45(2)從被抽查的,且這次數(shù)學成績超過120分的學生中,按分層抽樣的方法抽取5名,再從這5名同學中隨機抽取2名,求這兩名同學中至多有一名每天在線學習數(shù)學的時長超過1小時的概率附:,其中.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,當時,恒成立,求實數(shù)的取值范圍.22.(10分)如圖是一個正三棱柱(以為底面)被一平面所截得到的幾何體,截面為ABC.已知,,M為AB中點.(1)證明:平面;(2)求此幾何體的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有無數(shù)多個點到的距離相等,則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個點到的距離相等,故必要性成立,所以“內(nèi)有無數(shù)多個點到的距離相等”是“”的必要不充分條件.故選:B.2、A【解析】函數(shù)的圖象在點處的切線與直線平行,利用導函數(shù)的幾何含義可以求出,轉(zhuǎn)化求解數(shù)列的通項公式,進而由數(shù)列的通項公式,利用裂項相消法求和即可【詳解】解:∵函數(shù)的圖象在點處的切線與直線平行,由求導得:,由導函數(shù)得幾何含義得:,可得,∴,所以,∴數(shù)列的通項為,所以數(shù)列的前項的和即為,則利用裂項相消法可以得到:所以數(shù)列的前2021項的和為:.故選:A.3、C【解析】由函數(shù)的圖象可知其單調(diào)性情況,再由導函數(shù)與原函數(shù)的關系即可得解.【詳解】由函數(shù)的圖象可知,當時,從左向右函數(shù)先增后減,故時,從左向右導函數(shù)先正后負,故排除AB;當時,從左向右函數(shù)先減后增,故時,從左向右導函數(shù)先負后正,故排除D.故選:C.4、C【解析】頻率跟實驗次數(shù)有關,概率是一種現(xiàn)象的固有屬性,與實驗次數(shù)無關,即可得到答案.【詳解】頻率跟實驗次數(shù)有關,出現(xiàn)正面朝上的頻率為實驗中出現(xiàn)正面朝上的次數(shù)除以總試驗次數(shù),故為.概率是拋硬幣試驗的固有屬性,與實驗次數(shù)無關,拋硬幣正面朝上的概率為.故選:C5、B【解析】由數(shù)量積的坐標運算求得,令,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B6、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設,,當時,由,不妨設,因為是等腰直角三角形,所以有,或舍去,故選:B7、C【解析】利用正弦函數(shù)和常數(shù)導數(shù)公式,結(jié)合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C8、B【解析】設該弦所在直線與橢圓的兩個交點分別為,,則,利用點差法可得答案.【詳解】設該弦所在直線與橢圓的兩個交點分別為,,則因為,兩式相減可得,,即由中點公式可得,所以,即,所以AB所在直線方程為,即故選:B9、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C10、B【解析】由導數(shù)運算法則求出導發(fā)函數(shù),然后可得導數(shù)值【詳解】由題意,所以故選:B11、A【解析】根據(jù)雙曲線的幾何意義即可得到結(jié)果.【詳解】因為雙曲線的實軸長為2a,而雙曲線中,,所以其實軸長為故選:A12、B【解析】根據(jù)橢圓的標準方程,確定,計算離心率即可.【詳解】由知,,,,即,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)題意,求得過點的直線截圓所得弦長的最大值和最小值,即可求得公差的最大值.【詳解】圓的圓心,半徑,設點為點,因為,故點在圓內(nèi),當直線過點,且經(jīng)過圓心時,該直線截圓所得弦長取得最大值;當直線過點,且與直線垂直時,該直線截圓所得弦長取得最小值,此時,則滿足題意的直線為,即,又,則該直線截圓所得弦長為;根據(jù)題意,要使得數(shù)列的公差最大,則,故最大公差.故答案為:.14、【解析】根據(jù)給定條件設出所求直線方程,利用待定系數(shù)法求解即得.【詳解】設與直線平行的直線的方程為,而點在直線上,于是得,解得,所以所求的直線的方程為.故答案為:15、【解析】首先將圓的方程配成標準式,即可得到圓心坐標與半徑,從而可得點在圓內(nèi),即可得到過點的最長弦、最短弦弦長,即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點,則,所以點在圓內(nèi),所以過點的最長弦,又,所以最短弦,所以故答案為:16、【解析】用累加法求出通項,再由通項表達式確定最大項.【詳解】當時,,所以數(shù)列中最大項的數(shù)值為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、,【解析】先求導函數(shù),再根據(jù)導函數(shù)得到單調(diào)區(qū)間,比較極值和端點值,即可得到最大值和最小值.【詳解】解:依題意,,令,得或,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減,又,,,所以,18、(1)(2)證明見解析【解析】(1)由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,分類討論,再次利用導數(shù)研究函數(shù)的最值即可;(2)由(1)可知,在存在極值點,則且,求得,再兩次求導即可得結(jié)論.【小問1詳解】由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,設,當時,由,得,在,上為增函數(shù),則,在,上恒成立,滿足命題,當時,由,得,在上為減函數(shù),,時,,即,不滿足恒成立,不成立,綜上:的取值范圍為.小問2詳解】證明:由(1)可知,在存在極值點,則且即:要證只需證即證又由(1)可知在上為增函數(shù),且,成立.要證只需證即證:設則即在上增函數(shù)在為增函數(shù)成立.綜上,成立.19、(1);(2)或.【解析】(1)由條件得,再結(jié)合,可求得橢圓方程;(2)由題意設直線l:x=my+4,設M(x1,y1),N(x2,y2),直線方程與橢圓方程聯(lián)立方程組,消去,整理后利用根與系的關系可得,,再由OM⊥ON,可得x1x2+y1y2=0,從而可列出關于的方程,進而可求出的值,即可得到直線的方程【詳解】(1)由條件知,解得,則故橢圓的方程為(2)顯然直線l的斜率存在,且斜率不為0,設直線l:x=my+4交橢圓C于M(x1,y1),N(x2,y2),由,當=(24m)2-4(3m2+4)×36>0時,有,,由條件OM⊥ON可得,,即x1x2+y1y2=0,從而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且滿足>0從而直線l方程為或20、(1)表格見解析,有(2)【解析】(1)根據(jù)統(tǒng)計圖計算填表即可;(2)根據(jù)古典概型計算公式計算即可.【小問1詳解】根據(jù)統(tǒng)計圖可得:每天在線學習數(shù)學的時長不超過1小時數(shù)學成績不超過120分的有人,每天在線學習數(shù)學的時長不超過1小時數(shù)學成績超過120分的有人,每天在線學習數(shù)學的時長超過1小時數(shù)學成績不超過120分的有人,每天在線學習數(shù)學的時長超過1小時數(shù)學成績超過120分的有人,可得列聯(lián)表如下:數(shù)學成績不超過120分數(shù)學成績超過120分總計每天在線學習數(shù)學的時長不超過1小時151025每天在線學習數(shù)學的時長超過1小時51520總計202545根據(jù)列聯(lián)表中的數(shù)據(jù),所以有95%的把握認為“高二學生的這次摸底考試數(shù)學成績與其每天在線學習數(shù)學的時長有關”【小問2詳解】由列聯(lián)表可得,被抽查學生中這次數(shù)學成績超過120分的有25人,其中每天在線學習數(shù)學的時長不超過1小時的有10人,每天在線學習數(shù)學的時長超過1小時的有15人,人數(shù)比為2∶3,按分層抽樣每天在線學習數(shù)學的時長不超過1小時的抽2人,記為:1,2;每天在線學習數(shù)學的時長超過1小時的抽3人,記為:a,b,c.所有可能結(jié)果如下:,共計10種.設事件A為“兩名同學中至多有一名每天在線學習數(shù)學時長超過一小時”包含這7種可能結(jié)果所以21、(1)答案見解析;(2).【解析】(1)求得,分、兩種情況討論,分析導數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)利用參變量分離法可得出對任意的恒成立,構(gòu)造函數(shù),其中,利用導數(shù)求出函數(shù)在上的最小值,由此可求得實數(shù)的取值范圍.【小問1詳解】解:函數(shù)的定義域為,.因為,由,可得.①當時,由可得,由可得.此時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;②當時,由可得,由可得,此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.綜上所述,當時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當時,函數(shù)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】解:當且時,由,可得,令,其中,.當時,,此時函數(shù)單調(diào)遞減,當時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論