山西省太原市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第1頁
山西省太原市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第2頁
山西省太原市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第3頁
山西省太原市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第4頁
山西省太原市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山西省太原市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)等差數(shù)列,前n項和分別是,若,則()A.1 B.C. D.2.過坐標(biāo)原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.3.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.4.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)中相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)5.如圖,在平行六面體中,AC與BD的交點為M.設(shè),則下列向量中與相等的向量是()A. B.C. D.6.設(shè)村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.7.已知,是雙曲線的左,右焦點,經(jīng)過點且與x軸垂直的直線與雙曲線的一條漸近線相交于點A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.8.美學(xué)四大構(gòu)件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學(xué).素描是學(xué)習(xí)繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學(xué)習(xí)幾何體結(jié)構(gòu)素描是學(xué)習(xí)素描最重要的一步.某同學(xué)在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為60度的直角梯形,則該橢圓的離心率為()A. B.C. D.9.直線的傾斜角為()A.30° B.60°C.90° D.120°10.已知角的終邊經(jīng)過點,則,的值分別為A., B.,C., D.,11.如圖,在直三棱柱中,,,E是的中點,則直線BC與平面所成角的正弦值為()A. B.C. D.12.已知函數(shù)的定義域為,其導(dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓柱的高、底面半徑均為1,則其表面積為___________14.?dāng)?shù)列滿足,,則______.15.2021年7月,某市發(fā)生德爾塔新冠肺炎疫情,市衛(wèi)健委決定在全市設(shè)置多個核酸檢測點對全市人員進(jìn)行核酸檢測.已知組建一個小型核酸檢測點需要男醫(yī)生1名,女醫(yī)生3名,每小時可做200人次的核酸檢測,組建一個大型核酸檢測點需要男醫(yī)生3名,女醫(yī)生3名.每小時可做300人次的核酸檢測.某三甲醫(yī)院決定派出男醫(yī)生10名、女醫(yī)生18名去做核酸檢測工作,則這28名醫(yī)生需要組建________個小型核酸檢測點和________個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.16.在中,內(nèi)角,,的對邊分別為,,,若,且,則_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列前n項和.18.(12分)已知命題:“曲線表示焦點在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍.19.(12分)已知函數(shù)f(x)=x-mlnx-m.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有最小值g(m),證明:g(m)在上恒成立.20.(12分)已知橢圓的左、右頂點坐標(biāo)分別是,,短軸長等于焦距.(1)求橢圓的方程;(2)若直線與橢圓相交于兩點,線段的中點為,求.21.(12分)已知數(shù)列的前項和為,且.(1)求的通項公式;(2)求數(shù)列的前項和.22.(10分)2022北京冬奧會即將開始,北京某大學(xué)鼓勵學(xué)生積極參與志愿者的選拔.某學(xué)院有6名學(xué)生通過了志愿者選拔,其中4名男生,2名女生(1)若從中挑選2名志愿者,求入選者正好是一名男生和一名女生的概率;(2)若從6名志愿者中任選3人負(fù)責(zé)滑雪項目服務(wù)崗位,那么現(xiàn)將6人分為A、B兩組進(jìn)行滑雪項目相關(guān)知識及志愿者服務(wù)知識競賽,共賽10局.A、B兩組分?jǐn)?shù)(單位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139從統(tǒng)計學(xué)角度看,應(yīng)選擇哪個組更合適?理由是什么?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)等差數(shù)列的性質(zhì)和求和公式變形求解即可【詳解】因為等差數(shù)列,的前n項和分別是,所以,故選:B2、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以O(shè)A為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標(biāo)原點作直線的垂線,垂足為,可知:落在以O(shè)A為直徑的圓上,而以O(shè)A為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠(yuǎn)距離為,但將原點坐標(biāo)代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D3、D【解析】如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時,的最小值為-8,故選D.4、C【解析】根據(jù)莖葉圖中數(shù)據(jù)的波動情況,可直接判斷方差不同;根據(jù)莖葉圖中的數(shù)據(jù),分別計算極差、中位數(shù)、平均數(shù),即可得出結(jié)果.【詳解】由莖葉圖可得:甲的數(shù)據(jù)更集中,乙的數(shù)據(jù)較分散,所以甲與乙的方差不同;甲的極差為;乙的極差為,所以甲與乙的極差不同;甲的中位數(shù)為,乙的中位數(shù)為,所以中位數(shù)不同;甲的平均數(shù)為,乙的平均數(shù)為,所以甲、乙的平均數(shù)相同;故選:C.5、B【解析】根據(jù)代入計算化簡即可.【詳解】故選:B.6、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B7、B【解析】根據(jù)雙曲線的幾何性質(zhì)和平行四邊形的性質(zhì)可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進(jìn)而轉(zhuǎn)化為,的不等式,結(jié)合可得離心率的取值范圍【詳解】解:因為經(jīng)過點且與軸垂直的直線與雙曲線的一條漸近線相交于點,且在第三象限,四邊形為平行四邊形,所以由雙曲線的對稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因為,所以,,即,所以,即,即,故,所以.故選:B8、A【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故選:A【點睛】本題主要考查了橢圓的定義和橢圓離心力的求解,屬于基礎(chǔ)題.9、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計算得解.【詳解】直線的斜率,設(shè)其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B10、C【解析】利用任意角的三角函數(shù)的定義:,,,代入計算即可得到答案【詳解】由于角的終邊經(jīng)過點,則,,(為坐標(biāo)原點),所以由任意角的三角函數(shù)的定義:,.故答案選C【點睛】本題考查任意角的三角函數(shù)的定義,解決此類問題的關(guān)鍵是掌握牢記三角函數(shù)定義并能夠熟練應(yīng)用,屬于基礎(chǔ)題11、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為,則令,得.因為,所以,故直線BC與平面所成角的正弦值為.故選:D.12、B【解析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓柱表面積公式求解即可.【詳解】根據(jù)題意得到圓柱的高,底面半徑,則表面積.故答案為:14、【解析】根據(jù)遞推關(guān)系依次求得的值.【詳解】依題意數(shù)列滿足,,所以.故答案為:15、①.4②.2【解析】根據(jù)題意建立不等式組,進(jìn)而作出可行域,最后通過數(shù)形結(jié)合求得答案.【詳解】設(shè)需要組建個小型核酸檢測點和個大型核酸檢測點,則每小時做核酸檢測的最高人次,作出可行域如圖中陰影部分所示,由圖可見當(dāng)直線過點A時,z取得最大值,由得恰為整數(shù)點,所以組建4個小型核酸檢測點和2個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.故答案為:4;2.16、【解析】代入,展開整理得,①化為,與①式相加得,轉(zhuǎn)化為關(guān)于的方程,求解即可得出結(jié)論.【詳解】因為,所以,所以,因為,所以,則,整理得,解得.故答案為:.【點睛】本題考查正弦定理的邊角互化,考查三角函數(shù)化簡求值,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)先通過等比數(shù)列的基本量運算求出公比,進(jìn)而求出通項公式;(2)結(jié)合(1)求出,然后根據(jù)錯位相減法求得答案.【小問1詳解】設(shè)等比數(shù)列公比為q,,,,(負(fù)值舍去),所以.【小問2詳解】,,所以,解得:.18、(1);(2).【解析】(1)根據(jù)方程為焦點在軸上的橢圓的條件列不等式組,解不等式組求得的取值范圍.(2)求得為真命題時的取值范圍,結(jié)合是的必要不充分條件列不等式組,解不等式組求得的取值范圍.【詳解】(1)若是真命題,所以,解得,所以的取值范圍是.(2)由(1)得,是真命題時,的取值范圍是,為真命題時,,所以的取值范圍是因為是的必要不充分條件,所以,所以,等號不同時取得,所以【點睛】本小題主要考查橢圓、雙曲線,考查必要不充分條件求參數(shù).19、(1)答案見解析(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),討論其符號后可得函數(shù)的單調(diào)區(qū)間.(2)根據(jù)(1)的結(jié)論可得函數(shù)的最小值,再利用導(dǎo)數(shù)可證不等式.【小問1詳解】函數(shù)的定義域為,且,當(dāng)時,在上恒成立,所以此時在上為增函數(shù),當(dāng)時,由,解得,由,解得,所以在上為減函數(shù),在上為增函數(shù),綜上:當(dāng)時,在上為增函數(shù),當(dāng)時,在上為減函數(shù),在上為增函數(shù);【小問2詳解】由(1)知:當(dāng)時,在上為增函數(shù),無最小值.當(dāng)時,在上上為減函數(shù),在上為增函數(shù),所以,即,則,由,解得,由,解得,所以在上為增函數(shù),在上為減函數(shù),所以,即在上恒成立.20、(1);(2).【解析】(1)由橢圓頂點可知,又短軸長等于焦距可知,求出,即可寫出橢圓方程(2)根據(jù)“點差法”可求直線的斜率,寫出直線方程,聯(lián)立橢圓方程可得,,代入弦長公式即可求解.【詳解】(1)依題意,解得.故橢圓方程為.(2)設(shè)的坐標(biāo)分別為,,直線的斜率顯然存在,設(shè)斜率為,則,兩式相減得,整理得.因為線段的中點為,所以,所以直線的方程為,聯(lián)立,得,則,,故.【點睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),“點差法”,弦長公式,屬于中檔題.21、(1);(2).【解析】(1)利用,結(jié)合已知條件,即可容易求得通項公式;(2)根據(jù)(1)中所求,對數(shù)列進(jìn)行裂項求和,即可求得.【小問1詳解】當(dāng)時,.當(dāng)時,,因為當(dāng)時,,所以.【小問2詳解】因為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論