山西省大同市陽高縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
山西省大同市陽高縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
山西省大同市陽高縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
山西省大同市陽高縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
山西省大同市陽高縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西省大同市陽高縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與直線平行,則實數(shù)a的值為()A.1 B.C.1或 D.2.函數(shù),則的值為()A B.C. D.3.等比數(shù)列的公比,中有連續(xù)四項在集合中,則等于()A. B.C D.4.若直線與互相平行,且過點,則直線的方程為()A. B.C. D.5.某中學(xué)高一年級有200名學(xué)生,高二年級有260名學(xué)生,高三年級有340名學(xué)生,為了了解該校高中學(xué)生完成作業(yè)情況,現(xiàn)用分層抽樣的方法抽取一個容量為40的樣本,則高二年級抽取的人數(shù)為()A.10 B.13C.17 D.266.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》是明代數(shù)學(xué)家程大位(1533-1606年)所著.該書中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.17.已知等差數(shù)列且,則數(shù)列的前13項之和為()A.26 B.39C.104 D.528.已知平面,的法向量分別為,,且,則()A. B.C. D.9.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.10.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.橢圓的左右焦點分別為,是上一點,軸,,則橢圓的離心率等于()A. B.C. D.12.已知是數(shù)列的前項和,,則數(shù)列是()A.公比為3的等比數(shù)列 B.公差為3的等差數(shù)列C.公比為的等比數(shù)列 D.既非等差數(shù)列,也非等比數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.已知點P是拋物線上一個動點,則點P到點M(0,2)的距離與點P到該拋物線準線的距離之和的最小值為______________14.已知函數(shù),,則曲線在處的切線方程為___________.15.過圓內(nèi)的點作一條直線,使它被該圓截得的線段最短,則直線的方程是______16.設(shè)實數(shù)x,y滿足,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)若函數(shù)在上有極值,求實數(shù)a的取值范圍;(2)已知方程有兩個不等實根,證明:(注:是自然對數(shù)的底數(shù))18.(12分)如圖,已知橢圓的左頂點,過右焦點的直線與橢圓相交于兩點,當(dāng)直線軸時,.(1)求橢圓的方程;(2)記,的面積分別為,求的取值范圍;(3)若的重心在圓上,求直線的斜率.19.(12分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大小;(2)若,求△的面積S的最大值.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD,,,且,,點E為棱PC的動點.(1)當(dāng)點E是棱PC的中點時,求直線BE與平面PBD所成角的正弦值;(2)若E為棱PC上任一點,滿足,求二面角P-AB-E的余弦值.21.(12分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標;如果不存在,請說明理由.22.(10分)某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù);(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A2、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B3、C【解析】經(jīng)分析可得,等比數(shù)列各項的絕對值單調(diào)遞增,將五個數(shù)按絕對值的大小排列,計算相鄰兩項的比值,根據(jù)等比數(shù)列的定義即可求解.【詳解】因為等比數(shù)列中有連續(xù)四項在集合中,所以中既有正數(shù)項也有負數(shù)項,所以公比,因為,所以,且負數(shù)項為相隔兩項,所以等比數(shù)列各項的絕對值單調(diào)遞增,按絕對值排列可得,因,,,,所以是中連續(xù)四項,所以,故選:C.4、D【解析】由題意設(shè)直線的方程為,然后將點代入直線中,可求出的值,從而可得直線的方程【詳解】因為直線與互相平行,所以設(shè)直線的方程為,因為直線過點,所以,得,所以直線的方程為,故選:D5、B【解析】計算出抽樣比可得答案.【詳解】該校高中學(xué)生共有名,所以高二年級抽取的人數(shù)名.故選:B.6、A【解析】根據(jù)題意,轉(zhuǎn)化為等比數(shù)列,利用通項公式和求和公式進行求解.【詳解】設(shè)這個塔頂層有盞燈,則問題等價于一個首項為,公比為2的等比數(shù)列的前7項和為381,所以,解得,所以這個塔的最底層有盞燈.故選:A.7、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡已知條件可得的值,再由等差數(shù)列前項和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項之和為,故選:A8、D【解析】由題得,解方程即得解.【詳解】解:因為,所以所以,所以,所以.故選:D9、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時,、至少有一個為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因為也成立.所以A不正確;對于B,命題“”為假命題時,、至少有一個為假命題,所以B錯誤;C錯誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎(chǔ)題10、B【解析】根據(jù)充分條件和必要條件的概念即可判斷.【詳解】∵,∴“”是“”的必要不充分條件.故選:B.11、A【解析】在中結(jié)合已知條件,用焦距2c表示、,再利用橢圓定義計算作答.【詳解】令橢圓的半焦距為c,因是上一點,軸,,在中,,,由橢圓定義知,則,所以橢圓的離心率等于.故選:A12、D【解析】由得,然后利用與的關(guān)系即可求出【詳解】因為,所以所以當(dāng)時,時,所以故數(shù)列既非等差數(shù)列,也非等比數(shù)列故選:D【點睛】要注意由求要分兩步:1.時,2.時.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的定義得:,所以,當(dāng)三點共線時,最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當(dāng)三點共線時,最小,.故答案為:.14、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求得在點處的切線方程.【詳解】由,求導(dǎo),知,又,則函數(shù)在點處的切線方程為.故答案為:15、【解析】由已知得圓的圓心為,所以當(dāng)直線時,被該圓截得的線段最短,可求得直線的方程.【詳解】解:由得,所以圓的圓心為,所以當(dāng)直線時,被該圓截得的線段最短,所以,解得,所以直線l的方程為,即,故答案為:.16、5【解析】畫出可行域,利用目標函數(shù)的幾何意義即可求解【詳解】畫出可行域和目標函數(shù)如圖所示:根據(jù)平移知,當(dāng)目標函數(shù)經(jīng)過點時,有最小值為5.故答案為:5.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析.【解析】(1)利用導(dǎo)數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實數(shù)a的取值范圍;(2)記函數(shù),把證明,轉(zhuǎn)化為只需證明,用分析法證明即可.【小問1詳解】,定義域為,.令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實數(shù)a的取值范圍為.【小問2詳解】記函數(shù).則函數(shù)有兩個不等實根.因為,,兩式相減得,,兩式相加得,.因為,所以要證,只需證明,只需證明,只需證明,.證.設(shè),只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個角度進行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù);(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題;(4)利用導(dǎo)數(shù)證明不等式18、(1)(2)(3)【解析】(1)根據(jù)已知條件得到,,即可得到橢圓的方程.(2)首先設(shè)直線為,與橢圓聯(lián)立得到,根據(jù)得到的范圍,從而得到的范圍.(3)設(shè)重心,根據(jù)重心性質(zhì)得到,,再代入求解即可.小問1詳解】因為左頂點,所以,根據(jù),可得,解得,所以;【小問2詳解】設(shè)直線為,則,則,,那么,根據(jù)解得,所以.【小問3詳解】設(shè)重心,則:,,所以,所以,即所求直線的斜率為.19、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內(nèi)角的性質(zhì)可得,進而可得C的大?。唬?)由余弦定理可得,根據(jù)基本不等式可得,由三角形面積公式求面積的最大值,注意等號成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當(dāng)且僅當(dāng)時等號成立,∴△的面積S的最大值為.20、(1)(2)【解析】(1)由題意可得兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標系,利用空間向量求解,(2)設(shè),表示出點的坐標,然后根據(jù)求出的值,從而可得點的坐標,然后利用空間向量求二面角【小問1詳解】因為底面ABCD,平面,所以因為,所以兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標系,如圖所示,因為,,點E為棱PC的動點,所以,所以,,設(shè)平面的法向量為,則,令,則設(shè)直線BE與平面PBD所成角為,則,所以直線BE與平面PBD所成角的正弦值為,【小問2詳解】,因為E為棱PC上任一點,所以設(shè),所以,因為,所以,解得,所以,設(shè)平面的法向量為,則,令,則,取平面的一個法向量為,設(shè)二面角P-AB-E的平面角為,由圖可知為銳角,則,所以二面角P-AB-E余弦值為21、(1);(2).【解析】(1)直線與拋物線相切,所以有,可解得,得拋物線方程.(2)聯(lián)立直線與拋物線有,把目標式坐標化可得與無關(guān),可得.試題解析:(1)聯(lián)立方程有,,有,由于直線與拋物線相切,得,所以.(2)假設(shè)存在滿足條件的點,直線,有,,設(shè),有,,,,當(dāng)時,為定值,所以.22、(1);(2),;(3)【解析】(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方圖中眾數(shù)為最高矩形上端的中點可得,可得中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用戶分別為25,15,10,5,可得抽取比例,可得要抽取的戶數(shù)試題解析:(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方圖中x的值是0.0075.-------------3分(2)月平均用電量的眾數(shù)是=230.-------------5分因為(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論