《銷售管理》課件-任務(wù)6 銷售數(shù)據(jù)分析_第1頁
《銷售管理》課件-任務(wù)6 銷售數(shù)據(jù)分析_第2頁
《銷售管理》課件-任務(wù)6 銷售數(shù)據(jù)分析_第3頁
《銷售管理》課件-任務(wù)6 銷售數(shù)據(jù)分析_第4頁
《銷售管理》課件-任務(wù)6 銷售數(shù)據(jù)分析_第5頁
已閱讀5頁,還剩56頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

銷售數(shù)據(jù)分析目標01.02.03.04.CONTENTS建立對數(shù)據(jù)及報表的認識加強對數(shù)據(jù)分析的重視程度熟悉分析工具的使用形成理性分析的思維主要內(nèi)容(key

content)01.數(shù)據(jù)的定義及分類02.03.04.05.06.數(shù)據(jù)表現(xiàn)形式數(shù)據(jù)傳遞的兩種方式數(shù)據(jù)分析之目的數(shù)據(jù)分析之基本流程數(shù)據(jù)分析方法及應(yīng)用銷售管理的難點n您在銷售管理中遇到這些難題嗎?1.

制定銷售計劃無依據(jù);2.

執(zhí)行銷售計劃不可控;3.

銷售過程管理無頭緒;4.

銷售業(yè)績來源不清楚;5.

銷售績效考核單一化;6.

銷售數(shù)據(jù)繁雜如泥潭。n

為何遇到這些難題?互動問題匯總企業(yè)競爭的領(lǐng)先之道“將您的公司和您的競爭對手區(qū)別開來的最有意義的方法,使您的公司領(lǐng)先于眾多公司的最好方法,就是利用數(shù)據(jù)來干最好的工作。您怎樣收集、管理和使用數(shù)據(jù)將決定您的輸贏?!薄葼?蓋茨銷售數(shù)據(jù)的尷尬n

銷售數(shù)據(jù)收集困難;n

銷售數(shù)據(jù)缺失零散;n

銷售數(shù)據(jù)繁雜凌亂;n

銷售數(shù)據(jù)過期失真;n

數(shù)據(jù)整理費時費力;n

數(shù)據(jù)分析一片茫然;n

數(shù)據(jù)應(yīng)用無從下手。數(shù)據(jù)在哪呀互動問題匯總銷售數(shù)據(jù)n

銷售數(shù)據(jù)是指企業(yè)銷售人員主動或被動的與客戶聯(lián)系時獲得的客戶本身和其關(guān)于產(chǎn)品需求的各種信息。n

銷售數(shù)據(jù)的作用:ü

制定銷售計劃的依據(jù);ü

其它配套計劃的龍頭;ü

完成銷售計劃的保障;<200%?ü

過程管理的重要手段;ü

過程考核的首要指標;ü

市場競爭的分析預(yù)測。>200%?銷售數(shù)據(jù)——完成數(shù)據(jù)n

銷售完成數(shù)據(jù)是指已經(jīng)成交的訂單的全部信息。n

銷售完成數(shù)據(jù)的分類和作用:ü

上期間完成的銷售數(shù)據(jù)。?

制定銷售計劃的參考;?

考核銷售績效的指標;?

成本核算的堅實基礎(chǔ);?

市場競爭的分析解決。ü

本期間完成的銷售數(shù)據(jù)。?

銷售計劃執(zhí)行的評估;?

咨詢數(shù)據(jù)準確性的評價;?

績效考核的主要依據(jù);?

成本核算的堅實基礎(chǔ);?

市場競爭的分析解決。數(shù)據(jù)銷售計劃制定的基礎(chǔ)——銷售數(shù)據(jù)誰要買?他在哪?他做啥?咋聯(lián)系?買什么?何時買?買多少?什么價?做什么?和誰爭?客戶是誰(名稱)?企業(yè)?事業(yè)、機關(guān)?個人?統(tǒng)計需要:國家、大區(qū)、省;發(fā)貨、拜訪需要:地址。行業(yè)分類:生產(chǎn)、制造、服務(wù)、金融、商貿(mào)、教育……。電話、手機、傳真、郵箱、網(wǎng)站、聯(lián)系人、職務(wù)……產(chǎn)品名稱、規(guī)格、型號、……。銷售咨詢數(shù)據(jù)預(yù)計購買時間:生產(chǎn)計劃安排……。購買數(shù)量:物料采購、資金安排、大客戶安排……。成本核算、付款方式……。銷售分類:代理、經(jīng)銷、終端、OEM、主要應(yīng)用、……。競爭對手分析:價格、性能、服務(wù)、售后……。銷售表格化管理銷售完成數(shù)據(jù)分析體系銷售業(yè)績整體分析客戶數(shù)據(jù)分析

產(chǎn)品數(shù)據(jù)分析市場數(shù)據(jù)分析區(qū)域分布分析產(chǎn)品線分析時間需求分析行業(yè)分析需求分析價格分析成本分析產(chǎn)品應(yīng)用分析市場競爭分析數(shù)據(jù)的定義及分類一.Salesdataanalysis1

數(shù)據(jù)的定義及分類定義:數(shù)據(jù)是對客觀現(xiàn)象進行計量的結(jié)果特征:沒有規(guī)律,比較凌亂,不便于閱讀、也不便于理解和分析1

數(shù)據(jù)的定義及分類數(shù)據(jù)的分類A:定類尺度B:定序尺度C:定距尺度D:定比尺度數(shù)據(jù)的表現(xiàn)形式二.Salesdataanalysis2

數(shù)據(jù)的表現(xiàn)形式絕對數(shù)時期數(shù)時點數(shù)時期數(shù)反映現(xiàn)象在某一時期內(nèi)的總量,特征是可以累加時點數(shù)反映現(xiàn)象在某一瞬間時刻上的總量,特征是不可以累加2

數(shù)據(jù)的表現(xiàn)形式相對數(shù)比例(Proportion)比率(Ration)比例是總體中各個部分的數(shù)量占總體數(shù)量的比重,通常反映總體的構(gòu)成或結(jié)構(gòu)比率是不同類別數(shù)量比值數(shù)據(jù)傳遞的方式三.Salesdataanalysis3

數(shù)據(jù)傳遞的方式報表圖表3

數(shù)據(jù)傳遞的方式報表傳遞的目的報表是將雜亂的數(shù)據(jù)有條理的的組織在一張簡明的表格內(nèi),充分利用和繪制好統(tǒng)計表是做好數(shù)據(jù)分析的基本要求,也是基礎(chǔ)數(shù)據(jù)分析的最基本技能!3

數(shù)據(jù)傳遞的方式圖表傳遞的目的將報表所傳遞的信息,更清晰、更直觀的表達出來,使受眾很容易理解,從而達到和受眾溝通的目的數(shù)據(jù)分析之目的四.Salesdataanalysis4

數(shù)據(jù)分析之目的第四節(jié)

數(shù)據(jù)分析之目的4

數(shù)據(jù)分析之目的過往業(yè)績評估、認識規(guī)律、發(fā)現(xiàn)不足與問題銷售現(xiàn)狀監(jiān)控與評估、發(fā)現(xiàn)問題、解決問題銷售預(yù)測,戰(zhàn)略規(guī)劃、為決策提供量化依據(jù)五.

數(shù)據(jù)分析的基本流程Salesdataanalysis5

數(shù)據(jù)分析的基本流程第五節(jié)

數(shù)據(jù)分析的基本流程5

數(shù)據(jù)分析的基本流程界定分析的問題確定分析的時間段確定分析擬達到之目的分析方法之選擇分析結(jié)果論證最終解決問題提出解決問題整體方案跟蹤反饋六.

數(shù)據(jù)分析方法及應(yīng)用Salesdataanalysis6

數(shù)據(jù)分析方法及應(yīng)用描述性分析第六節(jié)

數(shù)據(jù)分析方法及應(yīng)用推斷性分析6

數(shù)據(jù)分析方法及應(yīng)用頻數(shù)分析(frequency)數(shù)據(jù)排序及分布均值分析描述性分析6

數(shù)據(jù)分析方法及應(yīng)用描述性分析數(shù)據(jù)排序(Rank)數(shù)據(jù)排序是按一定順序?qū)?shù)據(jù)排列,以便研究者通過瀏覽數(shù)據(jù)去發(fā)現(xiàn)一些明顯的特征趨勢及解決的線索;在這里,我們要注意排序與排名的區(qū)別前者可以重復(fù)后者不可以重復(fù)如:10月全國店鋪排名前10位的店有……6

數(shù)據(jù)分析方法及應(yīng)用排序分析案例:10月店鋪銷售前10名店鋪銷售額1,573,3971,061,241951,650886,138800,493737,777699,084680,216578,036570,238排名1北京崇光百貨武漢新世界百貨濟南貴和中心店廣州天河城234北京國貿(mào)商場杭州大廈56大連百年城7上海中信泰富昆明柏聯(lián)廣場西安世紀金花廣場89106

數(shù)據(jù)分析方法及應(yīng)用數(shù)據(jù)的分布特征探索數(shù)據(jù)主要有兩個分布特征,一是數(shù)據(jù)的集中趨勢;二是數(shù)據(jù)的離散趨勢1、前者的測定指標主要有眾數(shù)、中位數(shù)、平均值2、后者的測定指標主要有極差、方差、離散系數(shù)等我們在這里主要介紹一下我們在工作中可能要用到的方差,其公式如下:N

(xi

x)2

2

i

1N我們可以利用這個指標來做預(yù)測和計劃的差異合理化檢驗,也可以用它來衡量各個地區(qū)銷售波動大小6

數(shù)據(jù)分析方法及應(yīng)用描述性分析數(shù)據(jù)分組和頻數(shù)分析(frequency)根據(jù)分析需要將數(shù)據(jù)按照某種特征或標準分成不同組數(shù),同時可以計算各組的頻數(shù)或頻率,形成頻數(shù)分布表。根據(jù)數(shù)據(jù)的分組我們還可以根據(jù)研究的需要做各種各樣的圖表在這里,向大家推薦一個數(shù)據(jù)分組的經(jīng)驗公式:組數(shù)=K=1+LgN/Lg10組距=(最大值-最小值)/K如:………6

數(shù)據(jù)分析方法及應(yīng)用頻數(shù)分析案例:10月銷售區(qū)間關(guān)系2005年10月銷售區(qū)間目標數(shù)量(家)實際數(shù)量(家)占比占比43.75~37.5~43.7531.25~37.525~31.2518.75~2512.5~18.75~12.525%8%33%13%4%134177215%13%19%10%10%100%812%13%19%6%7610571035合計5252100%6

數(shù)據(jù)分析方法及應(yīng)用描述性分析均值分析(average

analysis)均值是全部數(shù)據(jù)的平均??梢苑譃槿N:一、簡單算術(shù)平均數(shù),各項數(shù)據(jù)的簡單平均,應(yīng)用最廣泛n

x

w

x

w

x

w

x

...

w

x

wi

xi1

12233n

ni

1w

w

w

...

w

1123n二、加權(quán)平均數(shù),加權(quán)算術(shù)平均數(shù)法是簡單算術(shù)平均數(shù)法的改進。它根據(jù)觀察期各個時間序列數(shù)據(jù)的重要程度,分別對各個數(shù)據(jù)進行加權(quán),對于越近的數(shù)據(jù),可以賦予越大的權(quán)重n

xi

...

x

x

xx

123xni

1nn6

數(shù)據(jù)分析方法及應(yīng)用描述性分析均值分析(average

analysis)三、幾何平均數(shù),它主要是用于計算比率或速度的平均。如可以計算1996年例外成立以來到2005年,終端銷售額的年平均增長速度,或一年中1-12月銷售的平均增長速度公式如下:a1a2a3anan

1ana0x

...

nna0

a1

a2如…………6

數(shù)據(jù)分析方法及應(yīng)用均值分析案例:平均單價趨勢6

數(shù)據(jù)分析方法及應(yīng)用回歸分析(regression

analysis)時間序列分析差異比較分析推斷性分析6

數(shù)據(jù)分析方法及應(yīng)用推斷性分析1、回歸分析以因果關(guān)系為前提,應(yīng)用統(tǒng)計方法尋找一個適當?shù)幕貧w模型,對未來市場的變化進行預(yù)測。2、回歸分析具有比較嚴密的理論基礎(chǔ)和成熟的計算分析方法;回歸預(yù)測分析是回歸分析在預(yù)測中的具體運用。3、在回歸預(yù)測分析中,預(yù)測對象稱為因變量,相關(guān)的分析對象稱為自變量。回歸分析根據(jù)自變量的多少分為一元回歸分析、二元回歸分析與多元回歸分析,4、但有時候二元回歸分析被并入到多元回歸分析之中;回歸分析根據(jù)回歸關(guān)系可分為線性回歸分析與非線性回歸分析。日常銷售中,根據(jù)上面的定義,我們可以知道銷售額是一個因變量,而產(chǎn)品價格、投產(chǎn)數(shù)量、設(shè)計成本、門店裝修費、店鋪數(shù)量、店鋪面積、店員數(shù)、推廣費用、VIP數(shù)量及消費金額等等都是自變量,我們可以通過長期數(shù)據(jù)的積累,進行回歸分析,從而確定那些因素是影響銷售額的關(guān)鍵因素,那些是非關(guān)鍵因素。進而采取行動解決實際問題6

數(shù)據(jù)分析方法及應(yīng)用推斷性分析回歸分析的基本步驟如下:第一步:判斷變量之間是否存在有相關(guān)關(guān)系第二步:確定因變量與自變量第三步:建立回歸預(yù)測模型第四步:對回歸預(yù)測模型進行評價第五步:利用回歸模型進行預(yù)測,分析評價預(yù)測值如:…………6

數(shù)據(jù)分析方法及應(yīng)用以下是秋裝價格、銷量與銷額之間的關(guān)系,我們可以以價格、銷量為自變量,銷額為因變量來進行回歸分析價格11981298139814981598169817981898銷量43642332355218532821134912801097銷額5224481.003024342.004959796.002775594.004506361.002290602.002299643.002082106.006

數(shù)據(jù)分析方法及應(yīng)用從上面的關(guān)系中,我們通過回歸分析,得到以下結(jié)論:回歸分析結(jié)論顯著性檢驗?zāi)P?系數(shù)-97299.2標準誤217152.8Betat檢驗-.448截距銷量價格.6581273.818108.78075.91670.6831.000.09216.7791.539.000.135通過回歸分析,因此,我們得到模型為:Y=1273.918*X1+108.780*X2其中Y為銷額,X1為銷量、X2為價格6

數(shù)據(jù)分析方法及應(yīng)用模型建立后,我們就運用它來進行在不同銷量上銷額的預(yù)測價格139814981598169817981898199822982368銷量3552185328211349128010971174910實際銷額495979627755944506361229060222996432082106?預(yù)測46770312523522376755319032241826201160395217129221409242359504?80?在相應(yīng)的價格和銷量下預(yù)測的銷售額通過預(yù)測,我們發(fā)現(xiàn)此回歸模型具有一定的準確性6

數(shù)據(jù)分析方法及應(yīng)用描述性分析時間序列分析(time

series

analysis)時間序列預(yù)測法是一種定量分析方法,它是在時間序列變量分析的基礎(chǔ)上,運用一定的數(shù)學(xué)方法建立預(yù)測模型,使時間趨勢向外延伸,從而預(yù)測未來市場的發(fā)展變化趨勢,確定變量預(yù)測值。時間序列預(yù)測法也叫歷史延伸法或外推法。時間序列預(yù)測法的基本特點是:1、假定事物的過去趨勢會延伸到未來;2、預(yù)測所依據(jù)的數(shù)據(jù)具有不規(guī)則性;3、撇開了市場發(fā)展之間的因果關(guān)系。6

數(shù)據(jù)分析方法及應(yīng)用描述性分析時間序列分析(time

series

analysis)時間序列是指同一變量按事件發(fā)生的先后順序排列起來的一組觀察值或記錄值。構(gòu)成時間序列的要素有兩個:其一是時間,其二是與時間相對應(yīng)的變量水平。實際數(shù)據(jù)的時間序列能夠展示研究對象在一定時期內(nèi)的發(fā)展變化趨勢與規(guī)律,因而可以從時間序列中找出變量變化的特征、趨勢以及發(fā)展規(guī)律,從而對變量的未來變化進行有效地預(yù)測。6

數(shù)據(jù)分析方法及應(yīng)用描述性分析時間序列分析(time

series

analysis)不規(guī)則變動循環(huán)變動長期趨勢季節(jié)變動6

數(shù)據(jù)分析方法及應(yīng)用上面為2003年6月到2005年9月各月銷售額走勢,從中我們可以到明顯的周期波動趨勢6

數(shù)據(jù)分析方法及應(yīng)用時間序列分析的任務(wù)之一就是把影響時間序列波動的四個因素進行分析,從而出現(xiàn)出其原來的走勢,再對下個月的銷售進行預(yù)測,下圖是分離了四種影響因素的銷售走勢,其走勢比沒有提出季節(jié)波動要平穩(wěn)得多,我們就在此基礎(chǔ)上再用上面的回歸分析建立模型進行預(yù)測6

數(shù)據(jù)分析方法及應(yīng)用通過回歸分析我們建立模型為:Y=1410.82+1.59*T,其中:T表示時間通過計算,預(yù)測到10月、11月的銷售額1919、1925、10月份的實際銷售為2040,可見預(yù)測具有一定的準確性!6

數(shù)據(jù)分析方法及應(yīng)用差異比較分析差異比較分析(difference

compare

analysis)差異性分析核心:將性質(zhì)接近的數(shù)據(jù)盡可能放在一起做比較,不一致的數(shù)據(jù)分開。從而為我們執(zhí)行差異化的各項政策提供量化依據(jù)。如:………6

數(shù)據(jù)分析方法及應(yīng)用單位:萬元

單位:萬元\03年05年04年6

數(shù)據(jù)分析方法及應(yīng)用單位:萬元04年03年05年6

數(shù)據(jù)分析方法及應(yīng)用單位:萬元05年04年03年6

數(shù)據(jù)分析方法及應(yīng)用u商品數(shù)據(jù)分析現(xiàn)有應(yīng)用6

數(shù)據(jù)分析方法及應(yīng)用地區(qū)累計進銷存報表秋1消化比區(qū)域名稱地區(qū)進量銷量存量哈爾濱長春沈陽濟南青島鄭州北京合計56577738157567%74%58%80%89%74%67%72%184202204219664832791076581857北區(qū)515641477164823186224846607166147456

數(shù)據(jù)分析方法及應(yīng)用單款周銷售跟蹤分析成熟期衰退期成長期導(dǎo)入期6

數(shù)據(jù)分析方法及應(yīng)用7月4日—7月10日店鋪銷售占比周報表05春05夏一05夏二05夏

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論