新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

講義05講:各類基本初等函數(shù)【考點(diǎn)講義】1.二次函數(shù)的圖象和性質(zhì)解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)圖象定義域RR值域eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(4ac-b2,4a),+∞))eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(4ac-b2,4a)))單調(diào)性在x∈eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上單調(diào)遞減;在x∈eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上單調(diào)遞增在x∈eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上單調(diào)遞增;在x∈eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上單調(diào)遞減對稱性函數(shù)的圖象關(guān)于直線x=-eq\f(b,2a)對稱2.冪函數(shù)(1)冪函數(shù)的定義一般地,形如y=xα的函數(shù)稱為冪函數(shù),其中x是自變量,α是常數(shù).(2)常見的五種冪函數(shù)的圖象和性質(zhì)比較函數(shù)y=xy=x2y=x3y=SKIPIF1<0y=x-1圖象性質(zhì)定義域RRR{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇函數(shù)偶函數(shù)奇函數(shù)非奇非偶函數(shù)奇函數(shù)單調(diào)性在R上單調(diào)遞增在(-∞,0]上單調(diào)遞減;在(0,+∞)上單調(diào)遞增在R上單調(diào)遞增在[0,+∞)上單調(diào)遞增在(-∞,0)和(0,+∞)上單調(diào)遞減公共點(diǎn)(1,1)3.一般冪函數(shù)的圖象特征(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(diǎn)(1,1).(2)當(dāng)α>0時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間[0,+∞)上是增函數(shù).特別地,當(dāng)α>1時(shí),冪函數(shù)的圖象下凸;當(dāng)0<α<1時(shí),冪函數(shù)的圖象上凸.(3)當(dāng)α<0時(shí),冪函數(shù)的圖象在區(qū)間(0,+∞)上是減函數(shù).(4)冪指數(shù)互為倒數(shù)的冪函數(shù)在第一象限內(nèi)的圖象關(guān)于直線y=x對稱.(5)在第一象限作直線x=a(a>1),它同各冪函數(shù)圖象相交,按交點(diǎn)從下到上的順序,冪指數(shù)按從小到大的順序排列.4.分?jǐn)?shù)指數(shù)冪(1)SKIPIF1<0=eq\r(n,am)(a>0,m,n∈N*,且n>1);SKIPIF1<0=SKIPIF1<0(a>0,m,n∈N*,且n>1);0的正分?jǐn)?shù)指數(shù)冪等于0;0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義.(2)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)(a>0,b>0,r,s∈R)aras=ar+s;SKIPIF1<0;(ar)s=ars;(ab)r=arbr.5.指數(shù)函數(shù)的圖象與性質(zhì)y=axa>10<a<1圖象定義域(1)R值域(2)(0,+∞)性質(zhì)(3)過定點(diǎn)(0,1)(4)當(dāng)x>0時(shí),y>1;當(dāng)x<0時(shí),0<y<1(5)當(dāng)x>0時(shí),0<y<1;當(dāng)x<0時(shí),y>1(6)在(-∞,+∞)上是增函數(shù)(7)在(-∞,+∞)上是減函數(shù)6.對數(shù)的概念一般地,如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作x=logaN,其中a叫做對數(shù)的底數(shù),N叫做真數(shù).以10為底的對數(shù)叫做常用對數(shù),記作lgN.以e為底的對數(shù)叫做自然對數(shù),記作lnN.(e=2.71828…)7.對數(shù)的性質(zhì)與運(yùn)算性質(zhì)(1)對數(shù)的性質(zhì):=1\*GB3①1的對數(shù)為零:loga1=0.=2\*GB3②底的對數(shù)為1:logaa=1.=3\*GB3③零和負(fù)數(shù)沒有對數(shù).=4\*GB3④SKIPIF1<0=N(a>0,且a≠1,N>0).(2)對數(shù)的運(yùn)算性質(zhì)如果a>0,且a≠1,b>0,M>0,N>0,那么:①loga(MN)=logaM+logaN;②logaeq\f(M,N)=logaM-logaN;③SKIPIF1<0=eq\f(m,n)logab.(3)換底公式:logab=eq\f(logcb,logca)(a>0,且a≠1,b>0,c>0,且c≠1).重要推論:=1\*GB3①logaN=eq\f(1,logNa)(N>0,且N≠1;a>0,且a≠1);=2\*GB3②logab·logbc·logcd=logad(a>0,b>0,c>0,d>0,且a≠1,b≠1,c≠1).8.對數(shù)函數(shù)的圖象與性質(zhì)y=logaxa>10<a<1圖象定義域(0,+∞)值域R性質(zhì)過定點(diǎn)(1,0),即x=1時(shí),y=0當(dāng)x>1時(shí),y>0;當(dāng)0<x<1時(shí),y<0當(dāng)x>1時(shí),y<0;當(dāng)0<x<1時(shí),y>0在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)9.反函數(shù)指數(shù)函數(shù)y=ax(a>0且a≠1)與對數(shù)函數(shù)y=logax(a>0且a≠1)互為反函數(shù),它們的圖象關(guān)于直線y=x對稱.【方法技巧】1.解決二次函數(shù)圖象與性質(zhì)問題時(shí)要注意:(1)拋物線的開口方向,對稱軸位置,定義區(qū)間三者相互制約,要注意分類討論.(2)要注意數(shù)形結(jié)合思想的應(yīng)用,尤其是給定區(qū)間上的二次函數(shù)最值問題,先“定性”(作草圖),再“定量”(看圖求解).(3)二次函數(shù)在閉區(qū)間上的最值主要有三種類型:軸定區(qū)間定、軸動區(qū)間定、軸定區(qū)間動.無論哪種類型,解題的關(guān)鍵都是圖象的對稱軸與區(qū)間的位置關(guān)系,當(dāng)含有參數(shù)時(shí),要依據(jù)圖象的對稱軸與區(qū)間的位置關(guān)系進(jìn)行分類討論.2.冪函數(shù):(1)冪函數(shù)的形式是y=xα(α∈R),其中只有一個參數(shù)α,因此只需一個條件即可確定其解析式.(2)在區(qū)間(0,1)上,冪函數(shù)中指數(shù)越大,函數(shù)圖象越靠近x軸(簡記為“指大圖低”),在區(qū)間(1,+∞)上,冪函數(shù)中指數(shù)越大,函數(shù)圖象越遠(yuǎn)離x軸.(3)對于冪函數(shù)圖象的掌握只要抓住在第一象限內(nèi)三條線分第一象限為六個區(qū)域,即x=1,y=1,y=x所分區(qū)域.根據(jù)α<0,0<α<1,α=1,α>1的取值確定位置后,其余象限部分由奇偶性決定.(4)在比較冪值的大小時(shí),必須結(jié)合冪值的特點(diǎn),選擇適當(dāng)?shù)暮瘮?shù),借助其單調(diào)性進(jìn)行比較,準(zhǔn)確掌握各個冪函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.3.指數(shù)函數(shù):(1)利用指數(shù)函數(shù)的函數(shù)性質(zhì)比較大小或解方程、不等式,最重要的是“同底”原則,比較大小還可以借助中間量;(2)求解與指數(shù)函數(shù)有關(guān)的復(fù)合函數(shù)問題,要明確復(fù)合函數(shù)的構(gòu)成,涉及值域、單調(diào)區(qū)間、最值等問題時(shí),都要借助“同增異減”這一性質(zhì)分析判斷.4.對數(shù)運(yùn)算的一般思路(1)拆:首先利用冪的運(yùn)算把底數(shù)或真數(shù)進(jìn)行變形,化成分?jǐn)?shù)指數(shù)冪的形式,使冪的底數(shù)最簡,然后利用對數(shù)運(yùn)算性質(zhì)化簡合并.(2)合:將對數(shù)式化為同底數(shù)的和、差、倍數(shù)運(yùn)算,然后逆用對數(shù)的運(yùn)算性質(zhì),轉(zhuǎn)化為同底對數(shù)真數(shù)的積、商、冪的運(yùn)算.5.對數(shù)函數(shù):(1)比較指數(shù)式和對數(shù)式的大小,可以利用函數(shù)的單調(diào)性,引入中間量;有時(shí)也可用數(shù)形結(jié)合的方法.(2)解題時(shí)要根據(jù)實(shí)際情況來構(gòu)造相應(yīng)的函數(shù),利用函數(shù)單調(diào)性進(jìn)行比較,如果指數(shù)相同,而底數(shù)不同則構(gòu)造冪函數(shù),若底數(shù)相同而指數(shù)不同則構(gòu)造指數(shù)函數(shù),若引入中間量,一般選0或1.(3)利用對數(shù)函數(shù)的性質(zhì),求與對數(shù)函數(shù)有關(guān)的函數(shù)值域和復(fù)合函數(shù)的單調(diào)性問題,必須弄清三方面的問題:一是定義域,所有問題都必須在定義域內(nèi)討論;二是底數(shù)與1的大小關(guān)系;三是復(fù)合函數(shù)的構(gòu)成,即它是由哪些基本初等函數(shù)復(fù)合而成的.另外,解題時(shí)要注意數(shù)形結(jié)合、分類討論、轉(zhuǎn)化與化歸思想的應(yīng)用.【核心題型】題型一:二次函數(shù)的圖像和性質(zhì)命題點(diǎn)1二次函數(shù)的單調(diào)性1.(2021·重慶市實(shí)驗(yàn)中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0在R上為減函數(shù),則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用二次函數(shù)、指數(shù)函數(shù)的單調(diào)性以及函數(shù)單調(diào)性的定義,建立關(guān)于a的不等式組,解不等式組即可得答案.【詳解】解:因?yàn)楹瘮?shù)SKIPIF1<0在R上為減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)a的取值范圍為SKIPIF1<0,故選:B.2.(2022·天津·耀華中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的增區(qū)間為(

)A.(–∞,–1) B.(–3,–1)C.[–1,+∞) D.[–1,1)【答案】B【分析】先求出函數(shù)的定義域,然后由復(fù)合函數(shù)的單調(diào)性可得出答案.【詳解】由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞增,所以函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞減,所以所以函數(shù)SKIPIF1<0單調(diào)遞減,故選:B.3.(2015·四川·高考真題(理))如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則mn的最大值為()A.16 B.18 C.25 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0時(shí),拋物線的對稱軸為SKIPIF1<0.據(jù)題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即SKIPIF1<0.SKIPIF1<0.由SKIPIF1<0且SKIPIF1<0得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),拋物線開口向下,據(jù)題意得,SKIPIF1<0即SKIPIF1<0.SKIPIF1<0.由SKIPIF1<0且SKIPIF1<0得SKIPIF1<0,故應(yīng)舍去.要使得SKIPIF1<0取得最大值,應(yīng)有SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0,所以最大值為18.選B..考點(diǎn):函數(shù)與不等式的綜合應(yīng)用.命題點(diǎn)2二次函數(shù)的值域、最值4.(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先利用配湊法求出SKIPIF1<0的解析式,則可求出SKIPIF1<0的解析式,從而可求出函數(shù)的最小值【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.從而SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,且最小值為SKIPIF1<0.故選:D5.(2022·江蘇·阜寧縣東溝中學(xué)高三階段練習(xí))已知直線SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由兩直線垂直得到SKIPIF1<0,再代入消元利用二次函數(shù)的性質(zhì)求解.【詳解】解:SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,二次函數(shù)的拋物線的對稱軸為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值SKIPIF1<0.故選:A.6.(2022·安徽·合肥雙鳳高級中學(xué)模擬預(yù)測(文))已知圓SKIPIF1<0與圓SKIPIF1<0的公共弦所在直線恒過點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】將兩圓的方程相減可得公共弦方程,從而求得定點(diǎn)SKIPIF1<0,利用點(diǎn)在直線上可得SKIPIF1<0,再代入SKIPIF1<0消元,轉(zhuǎn)化成一元二次函數(shù)的取值范圍;【詳解】解:由圓SKIPIF1<0,圓SKIPIF1<0,得圓SKIPIF1<0與圓SKIPIF1<0的公共弦所在直線方程為SKIPIF1<0,求得定點(diǎn)SKIPIF1<0,又SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0,即SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.【點(diǎn)睛】本題考查圓的公共弦方程求解、一元二次函數(shù)的最值,考查轉(zhuǎn)化與化歸思想的運(yùn)用.命題點(diǎn)3二次函數(shù)的恒(能)成立問題7.(2019·云南師大附中高三階段練習(xí)(文))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為實(shí)數(shù)集SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【分析】對二次項(xiàng)系數(shù)SKIPIF1<0分成兩種情況討論,即SKIPIF1<0,SKIPIF1<0,結(jié)合二次函數(shù)的圖象,即可得答案.【詳解】當(dāng)SKIPIF1<0時(shí),不等式為SKIPIF1<0,恒成立,滿足題意;當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,解得SKIPIF1<0,綜上,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.【點(diǎn)睛】本題考查一元二次不等式的恒成立問題,考查函數(shù)與方程思想、分類討論思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意判別式的應(yīng)用.8.(2021·江西·高三階段練習(xí)(理))已知f(x)=x2,g(x)=SKIPIF1<0-m,若對任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值范圍是________.【答案】SKIPIF1<0【分析】由題意,問題等價(jià)轉(zhuǎn)化為f(x)的最小值不小于g(x)的最小值,分別求出最值,列出不等式求解即可.【詳解】由題意f(x)的最小值不小于g(x)的最小值,所以f(0)≥g(2),即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】本題主要考查函數(shù)的最值問題,屬于簡單題.9.(2021·上海市吳淞中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0恒成立,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】根據(jù)題意,可得SKIPIF1<0,代入方程,可求得n的值,結(jié)合SKIPIF1<0性質(zhì),可得圖象的對稱軸為直線x=0,即可得m值,進(jìn)而可得SKIPIF1<0的方程,代入數(shù)據(jù),即可得答案.【詳解】因?yàn)楫?dāng)SKIPIF1<0時(shí),都有SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0圖象可知,要滿足題意,則圖象的對稱軸為直線x=0,所以SKIPIF1<0,解得m=2,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0題型二:冪函數(shù)的圖像和性質(zhì)10.(2022·北京二十中高一階段練習(xí))在同一坐標(biāo)系內(nèi),函數(shù)SKIPIF1<0和SKIPIF1<0的圖象可能是()A. B. C. D.【答案】B【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分SKIPIF1<0和SKIPIF1<0討論,利用排除法,即可求解,得到答案.【詳解】由題意,若SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0遞增,此時(shí)SKIPIF1<0遞增,排除D;縱軸上截距為正數(shù),排除C,即SKIPIF1<0時(shí),不合題意;若SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0遞減,又由SKIPIF1<0遞減可排除A,故選B.【點(diǎn)睛】本題主要考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解答中熟記冪函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.11.(2022·江蘇·啟東中學(xué)高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用冪函數(shù)的單調(diào)性可得出SKIPIF1<0、SKIPIF1<0的大小關(guān)系,利用指數(shù)函數(shù)的單調(diào)性可得出SKIPIF1<0、SKIPIF1<0的大小關(guān)系,構(gòu)造函數(shù)SKIPIF1<0,利用函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性可得出SKIPIF1<0、SKIPIF1<0的大小關(guān)系,即可得出結(jié)論.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,因此SKIPIF1<0.故選:B.12.(2021·湖南·長沙一中高三階段練習(xí))已知函數(shù)SKIPIF1<0,若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先判斷SKIPIF1<0的單調(diào)性和奇偶性,由此化簡不等式SKIPIF1<0,分離常數(shù)SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì)求得SKIPIF1<0的取值范圍.【詳解】由題意,SKIPIF1<0,即SKIPIF1<0為奇函數(shù),同時(shí)也為增函數(shù),∵SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0恒成立,SKIPIF1<0,若不等式恒成立,只需SKIPIF1<0,令SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:C題型三:指數(shù)函數(shù)的性質(zhì)及應(yīng)用13.(2022·寧夏六盤山高級中學(xué)高三階段練習(xí)(理))函數(shù)SKIPIF1<0的大致圖象為(

)A. B.C. D.【答案】D【分析】確定奇偶性,排除兩個選項(xiàng),然后再由函數(shù)值的變化趨勢排除一個選項(xiàng),得正確選項(xiàng).【詳解】由SKIPIF1<0可知SKIPIF1<0是偶函數(shù),排除A,B;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,選項(xiàng)C錯誤.故選:D【點(diǎn)睛】思路點(diǎn)睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.14.(2022·安徽·安慶市第九中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,滿足對任意的實(shí)數(shù)SKIPIF1<0,都有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】題目考察分段函數(shù)單調(diào)遞減的問題,要保證每一段都是單調(diào)遞減的,且在銜接處也單調(diào)遞減即可【詳解】由SKIPIF1<0可得:函數(shù)SKIPIF1<0在定義域內(nèi)為減函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為減函數(shù),則SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),根據(jù)指數(shù)函數(shù)的性質(zhì)可知,SKIPIF1<0為減函數(shù),若SKIPIF1<0在R上為減函數(shù),還需要SKIPIF1<0,解得:SKIPIF1<0,綜上可得,SKIPIF1<0的取值范圍為SKIPIF1<0故選:D15.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【分析】換元后利用參變分離,最后用基本不等式進(jìn)行求解.【詳解】由題意得:SKIPIF1<0有解令SKIPIF1<0SKIPIF1<0有解,即SKIPIF1<0有解,顯然SKIPIF1<0無意義SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等,SKIPIF1<0故答案為:SKIPIF1<0.題型四:對數(shù)函數(shù)的性質(zhì)及應(yīng)用16.(2010·全國·高三階段練習(xí)(理))函數(shù)SKIPIF1<0的值域是(

).A.R B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先求出函數(shù)的定義域,然后判定復(fù)合函數(shù)的單調(diào)性,結(jié)合單調(diào)性求出函數(shù)值域【詳解】SKIPIF1<0恒成立,SKIPIF1<0函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0設(shè)SKIPIF1<0由復(fù)合函數(shù)的單調(diào)性可知函數(shù)SKIPIF1<0在定義域SKIPIF1<0上先增后減,函數(shù)取到最大值即:SKIPIF1<0函數(shù)的值域?yàn)镾KIPIF1<0故選SKIPIF1<0【點(diǎn)睛】本題主要考查了求復(fù)合函數(shù)的值域,在求解時(shí)先求出函數(shù)的定義域,然后判斷出函數(shù)的單調(diào)性,最后求出函數(shù)值域,需要掌握解題方法17.(2021·湖北·襄陽四中高三階段練習(xí))地震的震級R與地震釋放的能量E的關(guān)系為R=SKIPIF1<0(lgE-11.4).2011年3月11日,日本東海岸發(fā)生了9.級特大地震,2008年中國汶川的地震級別為8.0級,那么2011年地震的能量是2008年地震能量的__________倍.【答案】10SKIPIF1<0【分析】根據(jù)題中給出的關(guān)系式求出9.0級地震釋放的能量與8.0級地震釋放能量的比即可.【詳解】設(shè)震級9.0級、8.0級地震釋放的能量分別為SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0.那么2011年地震的能量是2008年地震能量的10SKIPIF1<0倍.故答案為10SKIPIF1<0.【點(diǎn)睛】本題主要考查了對數(shù)函數(shù)的應(yīng)用,以及對數(shù)的運(yùn)算,屬于基礎(chǔ)題.18.(2021·天津·南開中學(xué)高三階段練習(xí))若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】令SKIPIF1<0,由題設(shè)易知SKIPIF1<0在SKIPIF1<0上為增函數(shù),根據(jù)二次函數(shù)的性質(zhì)列不等式組求SKIPIF1<0的取值范圍.【詳解】由題設(shè),令SKIPIF1<0,而SKIPIF1<0為增函數(shù),∴要使SKIPIF1<0在SKIPIF1<0上是增函數(shù),即SKIPIF1<0在SKIPIF1<0上為增函數(shù),∴SKIPIF1<0或SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0題型五:比較指數(shù)式、對數(shù)式的大小19.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0則下述關(guān)系式正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)SKIPIF1<0,為偶函數(shù),在(0,+∞)上單調(diào)遞減求解.【詳解】解:∵SKIPIF1<0,∴f(x)為偶函數(shù),且f(x)在(0,+∞)上單調(diào)遞減,∴SKIPIF1<0SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,故選:A.20.(2022·甘肅·高臺縣第一中學(xué)高三階段練習(xí)(文))設(shè)SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),且在SKIPIF1<0單調(diào)遞增,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先將SKIPIF1<0化為同底數(shù)的冪,利用指數(shù)對數(shù)函數(shù)的性質(zhì)比較SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三個數(shù)的大小關(guān)系,再由函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性并結(jié)合偶函數(shù)的性質(zhì)可得出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關(guān)系.【詳解】SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,由于函數(shù)SKIPIF1<0是偶函數(shù),在區(qū)間SKIPIF1<0上單調(diào)遞增,所以在SKIPIF1<0上單調(diào)遞減,由于函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,即SKIPIF1<0,故選:A.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性比較函數(shù)值的大小關(guān)系,涉及指數(shù)對數(shù)的運(yùn)算和比較大小,考查推理能力,屬于中等題.關(guān)鍵是轉(zhuǎn)化為SKIPIF1<0上的單調(diào)性再比較.21.(2022·北京·北師大二附中高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由指數(shù)冪運(yùn)算和對數(shù)恒等式得SKIPIF1<0,再結(jié)合SKIPIF1<0和SKIPIF1<0的單調(diào)性比較大小即可.【詳解】SKIPIF1<0由于函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,由于函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0.故選:A.【點(diǎn)睛】本題考查指數(shù)式和對數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,結(jié)合中間值法來比較,考查推理能力,屬于中等題.本題解題的關(guān)鍵在于利用對數(shù)恒等式和指數(shù)冪運(yùn)算得SKIPIF1<0,再借助函數(shù)SKIPIF1<0和SKIPIF1<0以及中間值SKIPIF1<0比較大小.【高考必刷】一、單選題1.(2022·天津市武清區(qū)楊村第一中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是單調(diào)函數(shù),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出二次函數(shù)圖像的對稱軸,由題意可得對稱軸小于等于SKIPIF1<0,或大于等于SKIPIF1<0,從而可求出SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0的圖像的對稱軸為SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上時(shí)單調(diào)函數(shù),所以SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D2.(2021·寧夏·青銅峽市寧朔中學(xué)高三階段練習(xí)(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】分析:由題意結(jié)合對數(shù)函數(shù)的性質(zhì)整理計(jì)算即可求得最終結(jié)果.詳解:由題意結(jié)合對數(shù)函數(shù)的性質(zhì)可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,據(jù)此可得:SKIPIF1<0.本題選擇D選項(xiàng).點(diǎn)睛:對于指數(shù)冪的大小的比較,我們通常都是運(yùn)用指數(shù)函數(shù)的單調(diào)性,但很多時(shí)候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進(jìn)行比較.這就必須掌握一些特殊方法.在進(jìn)行指數(shù)冪的大小比較時(shí),若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確.3.(2021·廣西·玉林市育才中學(xué)高三階段練習(xí)(理))函數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)SKIPIF1<0,將原函數(shù)式轉(zhuǎn)化為關(guān)于SKIPIF1<0的二次函數(shù)的形式,再利用二次函數(shù)的值域求出原函數(shù)的值域即可【詳解】解:設(shè)SKIPIF1<0,則SKIPIF1<0則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,故選A.【點(diǎn)睛】本題主要考查了利用換元法求函數(shù)的值域,解數(shù)學(xué)題時(shí),把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法,屬于基礎(chǔ)題4.(2017·湖南·長郡中學(xué)高三階段練習(xí)(理))冪函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0取不同的正數(shù)時(shí),在區(qū)間SKIPIF1<0上它們的圖象是一簇曲線(如圖).設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,連接AB,線段AB恰好被其中的兩個冪函數(shù)SKIPIF1<0,SKIPIF1<0的圖象三等分,即有SKIPIF1<0,則mn等于(

)A.1 B.2 C.3 D.無法確定【答案】A【解析】根據(jù)三等分關(guān)系求出坐標(biāo)SKIPIF1<0,SKIPIF1<0,即可求出對應(yīng)冪函數(shù)解析式,解出mn的值.【詳解】由題:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.【點(diǎn)睛】此題考查冪函數(shù)的圖像性質(zhì)辨析,根據(jù)圖像分析點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)求函數(shù)解析式.5.(2020·陜西西安·高三階段練習(xí)(理))定義新運(yùn)算“SKIPIF1<0”如下:SKIPIF1<0,已知函數(shù)SKIPIF1<0,則滿足SKIPIF1<0的實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】根據(jù)新定義,得到SKIPIF1<0的表達(dá)式,判斷函數(shù)SKIPIF1<0在定義域的單調(diào)性,可得結(jié)果.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0,易知,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0.故選:C【點(diǎn)睛】本題考查對新定義的理解,以及分段函數(shù)的單調(diào)性,重點(diǎn)在于寫出函數(shù)SKIPIF1<0以及判斷單調(diào)性,難點(diǎn)在于SKIPIF1<0滿足的不等式,屬中檔題.6.(2021·江蘇省鎮(zhèn)江中學(xué)高三階段練習(xí))滿足SKIPIF1<0的實(shí)數(shù)m的取值范圍是(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)冪函數(shù)SKIPIF1<0的單調(diào)性結(jié)合函數(shù)值的正負(fù),將所求不等式轉(zhuǎn)化為關(guān)于SKIPIF1<0的一次不等式組,求解即可.【詳解】冪函數(shù)SKIPIF1<0在SKIPIF1<0為減函數(shù),且函數(shù)值為正,在SKIPIF1<0為減函數(shù),且函數(shù)值為負(fù),SKIPIF1<0等價(jià)于,SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,所以不等式的解集為SKIPIF1<0.故選:D.【點(diǎn)睛】本題考查不等式的求解,利用冪函數(shù)的單調(diào)性是解題的關(guān)鍵,考查分類討論思想和計(jì)算求解能力,屬于中檔題.7.(2022·北京·人大附中高三階段練習(xí))設(shè)SKIPIF1<0,則“函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)SKIPIF1<0”是“函數(shù)SKIPIF1<0在SKIPIF1<0上遞減”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【分析】由冪函數(shù)的性質(zhì)結(jié)合充分條件和必要條件的定義即可得出答案.【詳解】函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,而SKIPIF1<0在SKIPIF1<0上遞減,函數(shù)SKIPIF1<0的圖象不一定經(jīng)過點(diǎn)SKIPIF1<0,如:SKIPIF1<0.所以“函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)SKIPIF1<0”是“函數(shù)SKIPIF1<0在SKIPIF1<0上遞減”的充分不必要條件.故選:A.8.(2020·全國·高三課時(shí)練習(xí)(理))若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】將不等式變?yōu)镾KIPIF1<0,根據(jù)SKIPIF1<0的單調(diào)性知SKIPIF1<0,以此去判斷各個選項(xiàng)中真數(shù)與SKIPIF1<0的大小關(guān)系,進(jìn)而得到結(jié)果.【詳解】由SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的增函數(shù),SKIPIF1<0為SKIPIF1<0上的減函數(shù),SKIPIF1<0為SKIPIF1<0上的增函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則A正確,B錯誤;SKIPIF1<0與SKIPIF1<0的大小不確定,故CD無法確定.故選:A.【點(diǎn)睛】本題考查對數(shù)式的大小的判斷問題,解題關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式,利用函數(shù)的單調(diào)性得到SKIPIF1<0的大小關(guān)系,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想.9.(2019·上海市吳淞中學(xué)高三開學(xué)考試)已知SKIPIF1<0,且SKIPIF1<0,函數(shù)SKIPIF1<0在同一坐標(biāo)系中的圖象可能是A. B. C. D.【答案】A【詳解】由題可知,當(dāng)?shù)讛?shù)a>1時(shí),指數(shù)函數(shù)與對數(shù)函數(shù)均為增函數(shù),直線與y軸的截距大于1,當(dāng)?shù)讛?shù)0<a<1時(shí),指數(shù)函數(shù)與對數(shù)函數(shù)均為減函數(shù),直線與y軸的截距小于1,故選A.10.(2022·甘肅·蘭州市第五十五中學(xué)高三開學(xué)考試(文))函數(shù)SKIPIF1<0的圖象大致為(

)A. B. C. D.【答案】B【分析】先判斷函數(shù)的奇偶性排除選項(xiàng)A,再根據(jù)SKIPIF1<0排除選項(xiàng)D,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,排除選項(xiàng)C,即得解.【詳解】由題得SKIPIF1<0,函數(shù)的定義域關(guān)于原點(diǎn)對稱.SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),所以排除選項(xiàng)A;又SKIPIF1<0,所以排除選項(xiàng)D;又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,指數(shù)函數(shù)SKIPIF1<0是爆炸式增長,所以SKIPIF1<0,SKIPIF1<0,所以排除選項(xiàng)C;故選:B11.(2022·遼寧葫蘆島·高三期中)函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象恒過定點(diǎn)SKIPIF1<0,若點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)上,則SKIPIF1<0的最小值為(

)A.12 B.14 C.16 D.18【答案】C【分析】求出SKIPIF1<0的坐標(biāo)代入橢圓方程,再將SKIPIF1<0化為積為定值的形式,利用基本不等式可求得結(jié)果.【詳解】由SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,所以SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號成立.故選:C【點(diǎn)睛】易錯點(diǎn)睛:利用基本不等式求最值時(shí),要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項(xiàng)必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項(xiàng)之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時(shí),必須驗(yàn)證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.12.(2020·安徽·高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0,以下命題:①若SKIPIF1<0,則SKIPIF1<0;②若SKIPIF1<0,則SKIPIF1<0;③若SKIPIF1<0,則SKIPIF1<0;④若SKIPIF1<0,則SKIPIF1<0.其中正確的個數(shù)是(

)A.1 B.2 C.3 D.4【答案】C【解析】畫出函數(shù)圖象易判斷①②正確,當(dāng)SKIPIF1<0,討論SKIPIF1<0和SKIPIF1<0可判斷③④.【詳解】如圖,畫出SKIPIF1<0的圖象,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,觀察圖形易判斷①②正確,對③④,當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,化為SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故③正確.故選:C.【點(diǎn)睛】本題考查對數(shù)函數(shù)的應(yīng)用,解題的關(guān)鍵是畫出函數(shù)的圖象,利用圖象結(jié)合對數(shù)函數(shù)性質(zhì)進(jìn)行化簡判斷.13.(2022·江蘇·高郵市第一中學(xué)高三階段練習(xí))已知55<84,134<85.設(shè)a=log53,b=log85,c=log138,則(

)A.a(chǎn)<b<c B.b<a<c C.b<c<a D.c<a<b【答案】A【分析】由題意可得SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,利用作商法以及基本不等式可得出SKIPIF1<0、SKIPIF1<0的大小關(guān)系,由SKIPIF1<0,得SKIPIF1<0,結(jié)合SKIPIF1<0可得出SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,結(jié)合SKIPIF1<0,可得出SKIPIF1<0,綜合可得出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關(guān)系.【詳解】由題意可知SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0.綜上所述,SKIPIF1<0.故選:A.【點(diǎn)睛】本題考查對數(shù)式的大小比較,涉及基本不等式、對數(shù)式與指數(shù)式的互化以及指數(shù)函數(shù)單調(diào)性的應(yīng)用,考查推理能力,屬于中等題.14.(2017·遼寧·東北育才學(xué)校高三階段練習(xí)(文))已知SKIPIF1<0,則下列不等式一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據(jù)已知條件,由對數(shù)函數(shù)的單調(diào)性可得SKIPIF1<0,然后利用反比例函數(shù)的單調(diào)性可以否定A;利用冪函數(shù)和指數(shù)函數(shù)的單調(diào)性,將不等式兩邊的數(shù)與中間量SKIPIF1<0比較大小,可以證明B;根據(jù)對數(shù)函數(shù)的性質(zhì),當(dāng)SKIPIF1<0時(shí)可以否定C;由指數(shù)函數(shù)的性質(zhì)可以否定D.【詳解】SKIPIF1<0為定義在SKIPIF1<0上的單調(diào)減函數(shù),故由已知SKIPIF1<0可得SKIPIF1<0,∵反比例函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)減函數(shù),∴SKIPIF1<0,故A錯誤;SKIPIF1<0,∴冪函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)遞增,又∵SKIPIF1<0,∴SKIPIF1<0;∵SKIPIF1<0,∴指數(shù)函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)遞減,又SKIPIF1<0∴SKIPIF1<0.∴SKIPIF1<0,故B正確;由已知只能得到SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,故C錯誤;由SKIPIF1<0可得SKIPIF1<0,故D錯誤.故選:B.【點(diǎn)睛】本題考查冪指對函數(shù)的性質(zhì),屬基礎(chǔ)題.綜合利用冪指對函數(shù)的單調(diào)性比較大小,應(yīng)當(dāng)熟練掌握冪指對函數(shù)的單調(diào)性,對于冪函數(shù),在指數(shù)大于0時(shí),在第一象限內(nèi)單調(diào)遞增,當(dāng)指數(shù)小于0時(shí),在第一象限內(nèi)單調(diào)遞減;對于指數(shù)函數(shù)和對數(shù)函數(shù),當(dāng)?shù)讛?shù)大于1時(shí)在定義域內(nèi)單調(diào)遞增,當(dāng)?shù)讛?shù)大于0小于1時(shí)在定義域內(nèi)單調(diào)遞減.15.(2020·湖南長沙·高三階段練習(xí)(理))已知偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,化簡SKIPIF1<0,利用中間量比較大小得解.【詳解】∵偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0.故選:C【分析】本題考查函數(shù)奇偶性、單調(diào)性及對數(shù)式大小比較,屬于基礎(chǔ)題.16.(2019·廣東茂名·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是A.(1,2) B.(2,3) C.(1,3) D.(2,4)【答案】A【分析】首先求出函數(shù)的定義域,把SKIPIF1<0代入函數(shù)中化簡,解出不等式的解,即可得到答案.【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,兩邊平方:SKIPIF1<0則SKIPIF1<0(1)或SKIPIF1<0(2)解(1)得:SKIPIF1<0無解,解(2)得:SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是:SKIPIF1<0;故答案選A【點(diǎn)睛】本題主要考查對數(shù)不等式的解,解題時(shí)注意定義域的求解,有一定綜合性,屬于中檔題.17.(2022·全國·高三專題練習(xí))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】轉(zhuǎn)化為當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的圖象不在SKIPIF1<0的圖象的上方,根據(jù)圖象列式可解得結(jié)果.【詳解】由題意知關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0恒成立,所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的圖象不在SKIPIF1<0的圖象的上方,由圖可知SKIPIF1<0,解得SKIPIF1<0.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象求解是解題關(guān)鍵.18.(2019·天津市武清區(qū)楊村第一中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),且SKIPIF1<0.若SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論