云南省昆明市五華區(qū)昆明長城中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第1頁
云南省昆明市五華區(qū)昆明長城中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第2頁
云南省昆明市五華區(qū)昆明長城中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第3頁
云南省昆明市五華區(qū)昆明長城中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第4頁
云南省昆明市五華區(qū)昆明長城中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云南省昆明市五華區(qū)昆明長城中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.對于函數(shù)y=,下列說法正確的是()A.y是x的反比例函數(shù) B.它的圖象過原點(diǎn)C.它的圖象不經(jīng)過第三象限 D.y隨x的增大而減小2.如圖,共有12個(gè)大不相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個(gè)涂上陰影,則能構(gòu)成這個(gè)正方體的表面展開圖的概率是()A. B. C. D.3.-5的倒數(shù)是A. B.5 C.- D.-54.已知二次函數(shù)y=﹣(x﹣h)2+1(為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對應(yīng)的函數(shù)值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+5.如圖,已知,那么下列結(jié)論正確的是()A. B. C. D.6.如圖,AB是⊙O的直徑,AB=8,弦CD垂直平分OB,E是弧AD上的動(dòng)點(diǎn),AF⊥CE于點(diǎn)F,點(diǎn)E在弧AD上從A運(yùn)動(dòng)到D的過程中,線段CF掃過的面積為()A.4π+3 B.4π+ C.π+ D.π+37.不等式組的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<38.小華在做解方程作業(yè)時(shí),不小心將方程中的一個(gè)常數(shù)弄臟了而看不清楚,被弄臟的方程是,這該怎么辦呢?他想了一想,然后看了一下書后面的答案,知道此方程的解是x=5,于是,他很快便補(bǔ)好了這個(gè)常數(shù),并迅速地做完了作業(yè)。同學(xué)們,你能補(bǔ)出這個(gè)常數(shù)嗎?它應(yīng)該是(

)A.2

B.3

C.4

D.59.如圖,矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),以點(diǎn)A為圓心,AD為半徑作弧交AB于點(diǎn)E,以點(diǎn)B為圓心,BF為半徑作弧交BC于點(diǎn)G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.610.如圖直線y=mx與雙曲線y=交于點(diǎn)A、B,過A作AM⊥x軸于M點(diǎn),連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在中,CM平分交AB于點(diǎn)M,過點(diǎn)M作交AC于點(diǎn)N,且MN平分,若,則BC的長為______.12.如圖,正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在邊BCCD上,BE=CF=1,小球P從點(diǎn)E出發(fā)沿直線向點(diǎn)F運(yùn)動(dòng),完成第1次與邊的碰撞,每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經(jīng)過的路程為__.13.圖1、圖2的位置如圖所示,如果將兩圖進(jìn)行拼接(無覆蓋),可以得到一個(gè)矩形,請利用學(xué)過的變換(翻折、旋轉(zhuǎn)、軸對稱)知識(shí),將圖2進(jìn)行移動(dòng),寫出一種拼接成矩形的過程______.14.如圖,已知函數(shù)y=3x+b和y=ax﹣3的圖象交于點(diǎn)P(﹣2,﹣5),則根據(jù)圖象可得不等式3x+b>ax﹣3的解集是_____.15.如圖,一名滑雪運(yùn)動(dòng)員沿著傾斜角為34°的斜坡,從A滑行至B,已知AB=500米,則這名滑雪運(yùn)動(dòng)員的高度下降了_____米.(參考數(shù)據(jù):sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)16.已知:如圖,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點(diǎn)D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.17.在平面直角坐標(biāo)系xOy中,點(diǎn)A(4,3)為⊙O上一點(diǎn),B為⊙O內(nèi)一點(diǎn),請寫出一個(gè)符合條件要求的點(diǎn)B的坐標(biāo)______.三、解答題(共7小題,滿分69分)18.(10分)﹣(﹣1)2018+﹣()﹣119.(5分)已知一次函數(shù)y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點(diǎn),點(diǎn)C在拋物線上且橫坐標(biāo)為1.(1)寫出拋物線的函數(shù)表達(dá)式;(2)判斷△ABC的形狀,并證明你的結(jié)論;(3)平面內(nèi)是否存在點(diǎn)Q在直線AB、BC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標(biāo),如果不存在,說說你的理由.20.(8分)如圖,在平面直角坐標(biāo)系xOy中,直線與x軸交于點(diǎn)A,與雙曲線的一個(gè)交點(diǎn)為B(-1,4).求直線與雙曲線的表達(dá)式;過點(diǎn)B作BC⊥x軸于點(diǎn)C,若點(diǎn)P在雙曲線上,且△PAC的面積為4,求點(diǎn)P的坐標(biāo).21.(10分)如圖,AC是⊙O的直徑,PA切⊙O于點(diǎn)A,點(diǎn)B是⊙O上的一點(diǎn),且∠BAC=30°,∠APB=60°.(1)求證:PB是⊙O的切線;(2)若⊙O的半徑為2,求弦AB及PA,PB的長.22.(10分)2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長五個(gè)維度進(jìn)行了綜合評(píng)價(jià).評(píng)價(jià)小組在選取的某中學(xué)七年級(jí)全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時(shí)間,并繪制成如下不完整的統(tǒng)計(jì)圖.根據(jù)上述信息,解答下列問題:(1)本次抽取的學(xué)生人數(shù)是______;扇形統(tǒng)計(jì)圖中的圓心角α等于______;補(bǔ)全統(tǒng)計(jì)直方圖;(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測試,每5人一組進(jìn)行.在隨機(jī)分組時(shí),小紅、小花兩名女生被分到同一個(gè)小組,請用列表法或畫樹狀圖求出她倆在抽道次時(shí)抽在相鄰兩道的概率.23.(12分)我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計(jì)算出a、b、c的值;結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績較好?計(jì)算初中代表隊(duì)決賽成績的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.24.(14分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動(dòng)點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解題分析】

直接利用反比例函數(shù)的性質(zhì)結(jié)合圖象分布得出答案.【題目詳解】對于函數(shù)y=,y是x2的反比例函數(shù),故選項(xiàng)A錯(cuò)誤;它的圖象不經(jīng)過原點(diǎn),故選項(xiàng)B錯(cuò)誤;它的圖象分布在第一、二象限,不經(jīng)過第三象限,故選項(xiàng)C正確;第一象限,y隨x的增大而減小,第二象限,y隨x的增大而增大,故選C.【題目點(diǎn)撥】此題主要考查了反比例函數(shù)的性質(zhì),正確得出函數(shù)圖象分布是解題關(guān)鍵.2、D【解題分析】

由正方體表面展開圖的形狀可知,此正方體還缺一個(gè)上蓋,故應(yīng)在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【題目詳解】因?yàn)楣灿?2個(gè)大小相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開圖的一部分,所以剩下7個(gè)小正方形.在其余的7個(gè)小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開圖的小正方形有4個(gè),因此先從其余的小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開圖的概率是.故選D.【題目點(diǎn)撥】本題考查了概率公式,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關(guān)鍵.3、C【解題分析】

若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).【題目詳解】解:5的倒數(shù)是.故選C.4、C【解題分析】

∵當(dāng)x<h時(shí),y隨x的增大而增大,當(dāng)x>h時(shí),y隨x的增大而減小,∴①若h<1≤x≤3,x=1時(shí),y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當(dāng)x=3時(shí),y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點(diǎn)睛:本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的增減性和最值分兩種情況討論是解題的關(guān)鍵.5、A【解題分析】

已知AB∥CD∥EF,根據(jù)平行線分線段成比例定理,對各項(xiàng)進(jìn)行分析即可.【題目詳解】∵AB∥CD∥EF,∴.故選A.【題目點(diǎn)撥】本題考查平行線分線段成比例定理,找準(zhǔn)對應(yīng)關(guān)系,避免錯(cuò)選其他答案.6、A【解題分析】

連AC,OC,BC.線段CF掃過的面積=扇形MAH的面積+△MCH的面積,從而證明即可解決問題.【題目詳解】如下圖,連AC,OC,BC,設(shè)CD交AB于H,∵CD垂直平分線段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直徑,∴,∴,∵,∴點(diǎn)F在以AC為直徑的⊙M上運(yùn)動(dòng),當(dāng)E從A運(yùn)動(dòng)到D時(shí),點(diǎn)F從A運(yùn)動(dòng)到H,連接MH,∵M(jìn)A=MH,∴∴,∵,∴CF掃過的面積為,故選:A.【題目點(diǎn)撥】本題主要考查了陰影部分面積的求法,熟練掌握扇形的面積公式及三角形的面積求法是解決本題的關(guān)鍵.7、B【解題分析】

根據(jù)解不等式組的方法可以求得原不等式組的解集.【題目詳解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式組的解集是x>1.故選B.【題目點(diǎn)撥】本題考查解一元一次不等式組,解題的關(guān)鍵是明確解一元一次不等式組的方法.8、D【解題分析】

設(shè)這個(gè)數(shù)是a,把x=1代入方程得出一個(gè)關(guān)于a的方程,求出方程的解即可.【題目詳解】設(shè)這個(gè)數(shù)是a,把x=1代入得:(-2+1)=1-,∴1=1-,解得:a=1.故選:D.【題目點(diǎn)撥】本題主要考查對解一元一次方程,等式的性質(zhì),一元一次方程的解等知識(shí)點(diǎn)的理解和掌握,能得出一個(gè)關(guān)于a的方程是解此題的關(guān)鍵.9、A【解題分析】

根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1-S2的值.【題目詳解】∵在矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【題目點(diǎn)撥】本題考查扇形面積的計(jì)算、矩形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.10、B【解題分析】

此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點(diǎn)關(guān)于原點(diǎn)對稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【題目詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【題目點(diǎn)撥】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€(gè)知識(shí)點(diǎn).二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】

根據(jù)題意,可以求得∠B的度數(shù),然后根據(jù)解直角三角形的知識(shí)可以求得NC的長,從而可以求得BC的長.【題目詳解】∵在Rt△ABC中,CM平分∠ACB交AB于點(diǎn)M,過點(diǎn)M作MN∥BC交AC于點(diǎn)N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案為1.【題目點(diǎn)撥】本題考查含30°角的直角三角形、平行線的性質(zhì)、等腰三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.12、AB,【解題分析】

根據(jù)已知中的點(diǎn)E,F(xiàn)的位置,可知入射角的正切值為,通過相似三角形,來確定反射后的點(diǎn)的位置.再由勾股定理就可以求出小球第5次碰撞所經(jīng)過路程的總長度.【題目詳解】根據(jù)已知中的點(diǎn)E,F的位置,可知入射角的正切值為,第一次碰撞點(diǎn)為F,在反射的過程中,根據(jù)入射角等于反射角及平行關(guān)系的三角形的相似可得,第二次碰撞點(diǎn)為G,在AB上,且AG=AB,第三次碰撞點(diǎn)為H,在AD上,且AH=AD,第四次碰撞點(diǎn)為M,在DC上,且DM=DC,第五次碰撞點(diǎn)為N,在AB上,且BN=AB,第六次回到E點(diǎn),BE=BC.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球第5次經(jīng)過的路程為:++++=,故答案為AB,.【題目點(diǎn)撥】本題考查了正方形與軸對稱的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與軸對稱的性質(zhì).13、先將圖2以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn),再將旋轉(zhuǎn)后的圖形向左平移5個(gè)單位.【解題分析】

變換圖形2,可先旋轉(zhuǎn),然后平移與圖2拼成一個(gè)矩形.【題目詳解】先將圖2以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)90°,再將旋轉(zhuǎn)后的圖形向左平移5個(gè)單位可以與圖1拼成一個(gè)矩形.故答案為:先將圖2以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)90°,再將旋轉(zhuǎn)后的圖形向左平移5個(gè)單位.【題目點(diǎn)撥】本題考查了平移和旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.14、x>﹣1.【解題分析】

根據(jù)函數(shù)y=3x+b和y=ax-3的圖象交于點(diǎn)P(-1,-5),然后根據(jù)圖象即可得到不等式

3x+b>ax-3的解集.【題目詳解】解:∵函數(shù)y=3x+b和y=ax-3的圖象交于點(diǎn)P(-1,-5),∴不等式

3x+b>ax-3的解集是x>-1,故答案為:x>-1.【題目點(diǎn)撥】本題考查一次函數(shù)與一元一次不等式、一次函數(shù)的圖象,熟練掌握是解題的關(guān)鍵.15、1.【解題分析】試題解析:在RtΔABC中,sin34°=∴AC=AB×sin34°=500×0.56=1米.故答案為1.16、2﹣π.【解題分析】試題分析:根據(jù)題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據(jù)∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.17、(2,2).【解題分析】

連結(jié)OA,根據(jù)勾股定理可求OA,再根據(jù)點(diǎn)與圓的位置關(guān)系可得一個(gè)符合要求的點(diǎn)B的坐標(biāo).【題目詳解】如圖,連結(jié)OA,OA==5,∵B為⊙O內(nèi)一點(diǎn),∴符合要求的點(diǎn)B的坐標(biāo)(2,2)答案不唯一.故答案為:(2,2).【題目點(diǎn)撥】考查了點(diǎn)與圓的位置關(guān)系,坐標(biāo)與圖形性質(zhì),關(guān)鍵是根據(jù)勾股定理得到OA的長.三、解答題(共7小題,滿分69分)18、-1.【解題分析】

直接利用負(fù)指數(shù)冪的性質(zhì)以及算術(shù)平方根的性質(zhì)分別化簡得出答案.【題目詳解】原式=﹣1+1﹣3=﹣1.【題目點(diǎn)撥】本題主要考查了實(shí)數(shù)運(yùn)算,正確化簡各數(shù)是解題的關(guān)鍵.19、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【解題分析】

(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計(jì)算出AC=10,根據(jù)直角三角形內(nèi)切圓半徑的計(jì)算公式得到Rt△ABC的內(nèi)切圓的半徑=2,設(shè)△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線,BI⊥y軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據(jù)角平分線的性質(zhì)可判斷點(diǎn)P、I、Q、G到直線AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數(shù)法求出直線AI的解析式為y=2x﹣7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標(biāo)即可.【題目詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當(dāng)x=1時(shí),y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內(nèi)切圓的半徑=,設(shè)△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內(nèi)心,∴AI、BI為角平分線,∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,∴點(diǎn)I、P、Q、G為△ABC的內(nèi)角平分線或外角平分線的交點(diǎn),它們到直線AB、BC、AC距離相等,BI=×2=4,而BI⊥y軸,∴I(4,1),設(shè)直線AI的解析式為y=kx+n,則,解得,∴直線AI的解析式為y=2x﹣7,當(dāng)x=0時(shí),y=2x﹣7=﹣7,則G(0,﹣7);設(shè)直線AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線AP的解析式為y=﹣x+13,當(dāng)y=1時(shí),﹣x+13=1,則P(24,1)當(dāng)x=0時(shí),y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【題目點(diǎn)撥】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、角平分線的性質(zhì)和三角形內(nèi)心的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì)是解題的關(guān)鍵.20、(1)直線的表達(dá)式為,雙曲線的表達(dá)方式為;(2)點(diǎn)P的坐標(biāo)為或【解題分析】分析:(1)將點(diǎn)B(-1,4)代入直線和雙曲線解析式求出k和m的值即可;(2)根據(jù)直線解析式求得點(diǎn)A坐標(biāo),由S△ACP=AC?|yP|=4求得點(diǎn)P的縱坐標(biāo),繼而可得答案.詳解:(1)∵直線與雙曲線()都經(jīng)過點(diǎn)B(-1,4),,,∴直線的表達(dá)式為,雙曲線的表達(dá)方式為.(2)由題意,得點(diǎn)C的坐標(biāo)為C(-1,0),直線與x軸交于點(diǎn)A(3,0),,∵,,點(diǎn)P在雙曲線上,∴點(diǎn)P的坐標(biāo)為或.點(diǎn)睛:本題主要考查反比例函數(shù)和一次函數(shù)的交點(diǎn)問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積是解題的關(guān)鍵.21、(1)見解析;(2)2【解題分析】試題分析:(1)連接OB,證PB⊥OB.根據(jù)四邊形的內(nèi)角和為360°,結(jié)合已知條件可得∠OBP=90°得證;(2)連接OP,根據(jù)切線長定理得直角三角形,根據(jù)含30度角的直角三角形的性質(zhì)即可求得結(jié)果.(1)連接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于點(diǎn)A,∴OA⊥PA,∴∠OAP=90°.∵四邊形的內(nèi)角和為360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵點(diǎn)B是⊙O上的一點(diǎn),∴PB是⊙O的切線.(2)連接OP,∵PA、PB是⊙O的切線,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考點(diǎn):此題考查了切線的判定、切線長定理、含30度角的直角三角形的性質(zhì)點(diǎn)評(píng):要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.22、(1)30;;(2).【解題分析】試題分析:(1)根據(jù)題意列式求值,根據(jù)相應(yīng)數(shù)據(jù)畫圖即可;(2)根據(jù)題意列表,然后根據(jù)表中數(shù)據(jù)求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的學(xué)生人數(shù)是30人;扇形統(tǒng)計(jì)圖中的圓心角α等于144°;故答案為30,144°;補(bǔ)全統(tǒng)計(jì)圖如圖所示:(2)根據(jù)題意列表如下:設(shè)豎列為小紅抽取的跑道,橫排為小花抽取的跑道,記小紅和小花抽在相鄰兩道這個(gè)事件為A,∴.考點(diǎn):列表法與樹狀圖法;扇形統(tǒng)計(jì)圖;利用頻率估計(jì)概率.23、(1)85,85,80;(2)初中部決賽成績較好;(3)初中代表隊(duì)選手成績比較穩(wěn)定.【解題分析】

分析:(1)根據(jù)成績表,結(jié)合平均數(shù)、眾數(shù)、中位數(shù)的計(jì)算方法進(jìn)行解答;(2)比較初中部、高中部的平均數(shù)和中位數(shù),結(jié)合比較結(jié)果得出結(jié)論;(3)利用方差的計(jì)算公式,求出初中部的方差,結(jié)合方差的意義判斷哪個(gè)代表隊(duì)選手的成績較為穩(wěn)定.【題目詳解】詳解:(1)初中5名選手的平均分,眾數(shù)b=85,高中5名選手的成績是:70,75,80,100,100,故中位數(shù)c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數(shù)高,故初中部決賽成績較好;(3)=70,∵,∴初中代表隊(duì)選手成績比較穩(wěn)定.【題目點(diǎn)撥】本題是一道有關(guān)條形統(tǒng)計(jì)圖、平均數(shù)、眾數(shù)、中位數(shù)、方差的統(tǒng)計(jì)類題目,掌握平均數(shù)、眾數(shù)、中位數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論