人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第04講 1.3 空間向量及其運算的坐標(biāo)表示(原卷版)_第1頁
人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第04講 1.3 空間向量及其運算的坐標(biāo)表示(原卷版)_第2頁
人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第04講 1.3 空間向量及其運算的坐標(biāo)表示(原卷版)_第3頁
人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第04講 1.3 空間向量及其運算的坐標(biāo)表示(原卷版)_第4頁
人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第04講 1.3 空間向量及其運算的坐標(biāo)表示(原卷版)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第04講1.3空間向量及其運算的坐標(biāo)表示課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①理解和掌握空間向量的坐標(biāo)表示及意義②會用向量的坐標(biāo)表達空間向量的相關(guān)運算③會求空間向量的夾角、長度以及有關(guān)平行、垂直的證明利用空間向量的坐標(biāo)表示,將形與數(shù)有機結(jié)合,并能進行相關(guān)的計算與證明是學(xué)習(xí)空間向量及運算的關(guān)鍵.也是解決空間幾何的重要手段與工具.知識點01:空間向量的正交分解及其坐標(biāo)表示1、空間直角坐標(biāo)系空間直角坐標(biāo)系及相關(guān)概念(1)空間直角坐標(biāo)系:在空間選定一點SKIPIF1<0和一個單位正交基底SKIPIF1<0,以SKIPIF1<0為原點,分別以SKIPIF1<0的方向為正方向,以它們的長為單位長度建立三條數(shù)軸:SKIPIF1<0軸、SKIPIF1<0軸、SKIPIF1<0軸,它們都叫做坐標(biāo)軸,這時我們就建立了一個空間直角坐標(biāo)系SKIPIF1<0.(2)相關(guān)概念:SKIPIF1<0叫做原點,SKIPIF1<0都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為SKIPIF1<0平面、SKIPIF1<0平面、SKIPIF1<0平面,它們把空間分成八個部分.2、空間向量的坐標(biāo)表示2.1空間一點的坐標(biāo):在空間直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0為坐標(biāo)向量,對空間任意一點SKIPIF1<0,對應(yīng)一個向量SKIPIF1<0,且點SKIPIF1<0的位置由向量SKIPIF1<0唯一確定,由空間向量基本定理,存在唯一的有序?qū)崝?shù)組SKIPIF1<0,使SKIPIF1<0.在單位正交基底SKIPIF1<0下與向量SKIPIF1<0對應(yīng)的有序?qū)崝?shù)組SKIPIF1<0叫做點SKIPIF1<0在此空間直角坐標(biāo)系中的坐標(biāo),記作SKIPIF1<0,其中SKIPIF1<0叫做點SKIPIF1<0的橫坐標(biāo),SKIPIF1<0叫做點SKIPIF1<0的縱坐標(biāo),SKIPIF1<0叫做點SKIPIF1<0的豎坐標(biāo).2.2空間向量的坐標(biāo):在空間直角坐標(biāo)系SKIPIF1<0中,給定向量SKIPIF1<0,作SKIPIF1<0.由空間向量基本定理,存在唯一的有序?qū)崝?shù)組SKIPIF1<0,使SKIPIF1<0.有序?qū)崝?shù)組SKIPIF1<0叫做SKIPIF1<0在空間直角坐標(biāo)系SKIPIF1<0中的坐標(biāo),上式可簡記作SKIPIF1<0.【即學(xué)即練1】(2023春·高二課時練習(xí))已知SKIPIF1<0是空間的一個單位正交基底,向量SKIPIF1<0用坐標(biāo)形式可表示為________.【答案】SKIPIF1<0【詳解】因為SKIPIF1<0是空間的一個單位正交基底,則有SKIPIF1<0.所以向量SKIPIF1<0用坐標(biāo)形式表示為SKIPIF1<0.故答案為:SKIPIF1<0知識點02:空間向量運算的坐標(biāo)表示設(shè)SKIPIF1<0,空間向量的坐標(biāo)運算法則如下表所示:運算坐標(biāo)表示加法SKIPIF1<0減法SKIPIF1<0數(shù)乘SKIPIF1<0數(shù)量積SKIPIF1<0知識點03:空間向量平行與垂直的條件,幾何計算的坐標(biāo)表示1、兩個向量的平行與垂直SKIPIF1<0平行(SKIPIF1<0)SKIPIF1<0SKIPIF1<0垂直(SKIPIF1<0)SKIPIF1<0SKIPIF1<0(SKIPIF1<0均非零向量)特別提醒:在SKIPIF1<0SKIPIF1<0中,應(yīng)特別注意,只有在SKIPIF1<0與三個坐標(biāo)平面都不平行時,才能寫成SKIPIF1<0.例如,若SKIPIF1<0與坐標(biāo)平面SKIPIF1<0平行,則SKIPIF1<0,這樣SKIPIF1<0就沒有意義了.【即學(xué)即練2】(2023春·四川成都·高二四川省成都列五中學(xué)??茧A段練習(xí))已知兩個空間向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則實數(shù)SKIPIF1<0的值為__________.【答案】SKIPIF1<0【詳解】因為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<02、向量長度的坐標(biāo)計算公式若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0空間向量長度公式表示的是向量的長度,其形式與平面向量長度公式一致,它的幾何意義是表示長方體的體對角線的長度3、兩個向量夾角的坐標(biāo)計算公式設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0【即學(xué)即練3】(2023春·高二課時練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求x,y,z的值;(2)求向量SKIPIF1<0與SKIPIF1<0所成角的余弦值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,設(shè)存在實數(shù)SKIPIF1<0,使得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.∴所以SKIPIF1<0.(2)由(1)知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴向量SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.4、兩點間的距離公式已知SKIPIF1<0,則SKIPIF1<0題型01空間向量的坐標(biāo)表示【典例1】(2023秋·北京豐臺·高二北京市第十二中學(xué)??计谀┰诳臻g直角坐標(biāo)系中,已知三點SKIPIF1<0,若點SKIPIF1<0在平面SKIPIF1<0內(nèi),則點SKIPIF1<0的坐標(biāo)可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(多選)(2023·全國·高二專題練習(xí))如圖,在正三棱柱SKIPIF1<0中,已知SKIPIF1<0的邊長為2,三棱柱的高為SKIPIF1<0的中點分別為SKIPIF1<0,以SKIPIF1<0為原點,分別以SKIPIF1<0的方向為SKIPIF1<0軸?SKIPIF1<0軸?SKIPIF1<0軸的正方向建立空間直角坐標(biāo)系,則下列空間點及向量坐標(biāo)表示正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023春·內(nèi)蒙古呼倫貝爾·高二??奸_學(xué)考試)已知點SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0滿足SKIPIF1<0,則點SKIPIF1<0的坐標(biāo)是________.【變式1】(2023秋·高二課時練習(xí))如圖,在空間直角坐標(biāo)系中,正方體SKIPIF1<0的棱長為1,SKIPIF1<0,則SKIPIF1<0等于A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023春·高二課時練習(xí))若SKIPIF1<0?SKIPIF1<0,點SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,則點SKIPIF1<0的坐標(biāo)是___________.題型02空間向量的坐標(biāo)運算【典例1】(2023春·高二課時練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【典例2】(2023春·高二課時練習(xí))如圖,在長方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,以SKIPIF1<0為單位正交基底,建立如圖所示的空間直角坐標(biāo)系SKIPIF1<0.(1)寫出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點的坐標(biāo);(2)寫出向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的坐標(biāo).【變式1】(2023春·福建寧德·高二校聯(lián)考期中)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三向量共面,則實數(shù)SKIPIF1<0等于(

)A.4 B.5 C.6 D.7【變式2】(2023秋·高二課時練習(xí))已知點SKIPIF1<0、SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0點的坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型03空間向量數(shù)量積(坐標(biāo)形式求空間向量的數(shù)量積)【典例1】(2023秋·北京豐臺·高二北京市第十二中學(xué)??计谀┤粝蛄縎KIPIF1<0,滿足條件SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【典例2】(2023春·高二課時練習(xí))已知向量SKIPIF1<0,SKIPIF1<0.求SKIPIF1<0.【變式1】(2023秋·廣東深圳·高二統(tǒng)考期末)已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023秋·天津·高二統(tǒng)考期末)已知空間向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型04空間向量數(shù)量積(坐標(biāo)形式求空間向量數(shù)量積的最值范圍問題)【典例1】(2023秋·湖北·高三校聯(lián)考階段練習(xí))在長方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上的點,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是平面SKIPIF1<0內(nèi)一動點,若直線SKIPIF1<0與平面SKIPIF1<0平行,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.17 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·山東煙臺·高二山東省煙臺第一中學(xué)??奸_學(xué)考試)正四面體SKIPIF1<0的棱長為2,動點SKIPIF1<0在以SKIPIF1<0為直徑的球面上,則SKIPIF1<0的最大值為(

)A.2 B.SKIPIF1<0 C.4 D.SKIPIF1<0【典例3】(2023·江蘇·高二專題練習(xí))在空間直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在直線SKIPIF1<0上運動,則當(dāng)SKIPIF1<0取得最小值時,SKIPIF1<0______.【變式1】(2023秋·河南鄭州·高二鄭州市第九中學(xué)??茧A段練習(xí))已知空間直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在直線SKIPIF1<0上運動,則當(dāng)SKIPIF1<0取得最小值時,點SKIPIF1<0的坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023秋·上海徐匯·高二南洋中學(xué)??计谀┮阎猄KIPIF1<0是長方體外接球的一條直徑,點P在長方體表面上運動,長方體的棱長分別為1、1、SKIPIF1<0,則SKIPIF1<0的取值范圍為________.題型05空間向量的模(坐標(biāo)形式求空間向量的模(距離,長度))【典例1】(2023春·江蘇南京·高二南京市第五高級中學(xué)??计谥校┮阎蛄縎KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,那么SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.5【典例2】(2023春·高二課時練習(xí))如圖,在棱長為1的正方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點,SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0,H為SKIPIF1<0的中點.求|SKIPIF1<0|.【典例3】(2023秋·山東日照·高二統(tǒng)考期末)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0_____.【變式1】(2023秋·上海長寧·高二上海市延安中學(xué)??计谀┮阎猄KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0為______.題型06空間向量的模(根據(jù)空間向量的模求參數(shù))【典例1】(2023·全國·高二專題練習(xí))已知向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0____________.題型07空間向量的模(坐標(biāo)形式求空間向量模的最值(范圍)問題)【典例1】(2022·高二課時練習(xí))已知正方體SKIPIF1<0的棱長為4,點SKIPIF1<0是棱SKIPIF1<0的中點,動點SKIPIF1<0在正方形SKIPIF1<0內(nèi)(包括邊界)運動,且SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0長度的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·高二課時練習(xí))如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點,點SKIPIF1<0在線段SKIPIF1<0上,點SKIPIF1<0在線段SKIPIF1<0上,求線段SKIPIF1<0長的最小值.【典例3】(2023·全國·高三專題練習(xí))已知單位空間向量SKIPIF1<0滿足SKIPIF1<0.若空間向量SKIPIF1<0滿足SKIPIF1<0,且對于任意實數(shù)SKIPIF1<0的最小值是2,則SKIPIF1<0的最小值是_________.【變式1】(2023春·上海寶山·高二統(tǒng)考期末)已知SKIPIF1<0、SKIPIF1<0是空間互相垂直的單位向量,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值是______.【變式2】(2023·上?!じ呷龑n}練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是空間兩兩垂直的單位向量,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為________.【變式3】(2023·江蘇·高二專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為__________.題型08空間向量的夾角問題(坐標(biāo)形式)【典例1】(2023秋·山東臨沂·高二??计谀┮阎臻g向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則向量SKIPIF1<0與SKIPIF1<0的夾角為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·江蘇·高二南師大二附中校聯(lián)考階段練習(xí))若向量SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0夾角的余弦值為SKIPIF1<0,則SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.2【典例3】(2023秋·高二課時練習(xí))已知空間三點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角SKIPIF1<0的大小是________.【典例4】(2023秋·河南周口·高二統(tǒng)考期末)已知向量SKIPIF1<0(1)求SKIPIF1<0;(2)求向量SKIPIF1<0與SKIPIF1<0夾角的余弦值.【變式1】(2023·江蘇淮安·江蘇省盱眙中學(xué)??寄M預(yù)測)若向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0的夾角的余弦值為SKIPIF1<0,則實數(shù)SKIPIF1<0等于(

).A.0 B.SKIPIF1<0 C.0或SKIPIF1<0 D.0或SKIPIF1<0【變式2】(2023春·甘肅白銀·高二??茧A段練習(xí))在空間直角坐標(biāo)系中,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0夾角的余弦值是______.【變式3】(2023秋·吉林遼源·高二校聯(lián)考期末)已知向量SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求向量SKIPIF1<0與SKIPIF1<0夾角的余弦值.題型09空間向量的投影向量(坐標(biāo)形式)【典例1】(2023春·江蘇宿遷·高二統(tǒng)考期中)已知向量SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·江蘇徐州·高二統(tǒng)考期中)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0在SKIPIF1<0上的投影向量的坐標(biāo)是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1】(2023·全國·高二專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影向量為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023秋·廣東廣州·高二秀全中學(xué)??计谀┮阎猄KIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影向量為(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型10空間向量的平行關(guān)系(坐標(biāo)形式)【典例1】(2023·江蘇·高二專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【典例2】(2023春·安徽合肥·高二??奸_學(xué)考試)已知兩個向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為(

)A.1 B.2 C.4 D.8【典例3】(2023·高二單元測試)向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______.【變式1】(2023秋·江西宜春·高二校考期末)設(shè)SKIPIF1<0,向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.3【變式2】(2023春·福建寧德·高二校聯(lián)考期中)已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型11空間向量的垂直關(guān)系(坐標(biāo)形式)【典例1】(2023春·內(nèi)蒙古呼倫貝爾·高二校考開學(xué)考試)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0互相垂直,則實數(shù)SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·江蘇鹽城·高二江蘇省響水中學(xué)??茧A段練習(xí))已知向量SKIPIF1<0.(1)求SKIPIF1<0;(2)當(dāng)SKIPIF1<0時,若向量SKIPIF1<0與SKIPIF1<0垂直,求實數(shù)SKIPIF1<0和SKIPIF1<0的值;(3)若向量SKIPIF1<0與向量SKIPIF1<0共面向量,求SKIPIF1<0的值.【典例3】(2023春·高二課時練習(xí))已知點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0;(2)求SKIPIF1<0;(3)若SKIPIF1<0與SKIPIF1<0垂直,求SKIPIF1<0.【變式1】(2023春·福建寧德·高二校聯(lián)考期中)已知向量SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0與SKIPIF1<0的夾角余弦值;(2)若SKIPIF1<0,求SKIPIF1<0的值.【變式2】(2023春·江蘇淮安·高二校考階段練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求實數(shù)SKIPIF1<0的值;(2)若SKIPIF1<0,求實數(shù)SKIPIF1<0的值.題型12易錯題型根據(jù)空間向量成銳角(鈍角)求參數(shù)【典例1】(多選)(2023春·江蘇宿遷·高二統(tǒng)考期中)若向量SKIPIF1<0與SKIPIF1<0的夾角為銳角,則實數(shù)SKIPIF1<0的值可能為(

).A.4 B.5 C.6 D.7【典例2】(2023春·江蘇宿遷·高二??茧A段練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0的夾角為鈍角,則實數(shù)SKIPIF1<0的取值范圍為______.【典例3】(2023春·高二課時練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0的夾角為鈍角,則實數(shù)SKIPIF1<0的取值范圍為________.【變式1】(2023春·高二課時練習(xí))若SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0的夾角是鈍角,則SKIPIF1<0的值的取值范圍為__________.【變式2】(2023春·高二課時練習(xí))若SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0的夾角是銳角,則SKIPIF1<0的值的取值范圍為__________.1.3空間向量及其運算的坐標(biāo)表示A夯實基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實基礎(chǔ)一、單選題1.(2023秋·山東濱州·高二統(tǒng)考期末)已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2023·全國·高二專題練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.40 C.6 D.363.(2023春·江蘇揚州·高二統(tǒng)考期中)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共面,則實數(shù)SKIPIF1<0為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2023·全國·高二專題練習(xí))已知在空間單位正交基底下,SKIPIF1<0是空間的一組單位正交基底,SKIPIF1<0是空間的另一組基底.若向量SKIPIF1<0在基底SKIPIF1<0下的坐標(biāo)為SKIPIF1<0,則向量SKIPIF1<0在基底SKIPIF1<0下的坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2023春·吉林通化·高二梅河口市第五中學(xué)??奸_學(xué)考試)設(shè)SKIPIF1<0,向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2023春·高二課時練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的夾角為120°,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2023·江蘇·高二專題練習(xí))已知長方體SKIPIF1<0中,SKIPIF1<0,若棱SKIPIF1<0上存在點SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2023·全國·高二專題練習(xí))《九章算術(shù)》是中國古代張蒼、耿壽昌所撰寫的一部數(shù)學(xué)專著,是《算經(jīng)十書》中最重要的一部,成于公元一世紀左右,是當(dāng)時世界上最簡練有效的應(yīng)用數(shù)學(xué)專著,它的出現(xiàn)標(biāo)志著中國古代數(shù)學(xué)形成了完整的體系.在《九章算術(shù)》里,將底面是直角三角形的直三棱柱稱為“塹堵”.已知在“塹堵”SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,動點SKIPIF1<0在“塹堵”的側(cè)面SKIPIF1<0上運動,且SKIPIF1<0,則SKIPIF1<0的最大值為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題9.(2023春·山東臨沂·高二統(tǒng)考期末)空間中三點SKIPIF1<0是坐標(biāo)原點,則(

)A.SKIPIF1<0B.SKIPIF1<0C.點SKIPIF1<0關(guān)于平面SKIPIF1<0對稱的點為SKIPIF1<0D.SKIPIF1<0與SKIPIF1<0夾角的余弦值是SKIPIF1<010.(2023·全國·高二專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0為鈍角 D.SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0三、填空題11.(2023春·江蘇連云港·高二校聯(lián)考期中)已知向量SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0_________,SKIPIF1<0在SKIPIF1<0上的投影向量的坐標(biāo)為______________.12.(2023·高三課時練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的夾角為鈍角,則x的取值范圍是___.四、解答題13.(2023春·高二課時練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)求向量SKIPIF1<0與向量SKIPIF1<0所成角的余弦值.14.(2023·江蘇·高二專題練習(xí))(1)已知向量SKIPIF1<0.①計算SKIPIF1<0和SKIPIF1<0②求SKIPIF1<0.(2)已知向量SKIPIF1<0.①若SKIPIF1<0,求實數(shù)SKIPIF1<0;②若SKIPIF1<0,求實數(shù)SKIPIF1<0.B能力提升1.(2023秋·陜西西安·高二長安一中校考期末)在棱長為2的正方體SKIPIF1<0中,點SKIPIF1<0分別在棱SKIPIF1<0和SKIPIF1<0上,且SK

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論